These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36142730)
1. Use of a Molecular Switch Probe to Activate or Inhibit GIRK1 Heteromers In Silico Reveals a Novel Gating Mechanism. Gazgalis D; Cantwell L; Xu Y; Thakur GA; Cui M; Guarnieri F; Logothetis DE Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142730 [TBL] [Abstract][Full Text] [Related]
2. The small molecule GAT1508 activates brain-specific GIRK1/2 channel heteromers and facilitates conditioned fear extinction in rodents. Xu Y; Cantwell L; Molosh AI; Plant LD; Gazgalis D; Fitz SD; Dustrude ET; Yang Y; Kawano T; Garai S; Noujaim SF; Shekhar A; Logothetis DE; Thakur GA J Biol Chem; 2020 Mar; 295(11):3614-3634. PubMed ID: 31953327 [TBL] [Abstract][Full Text] [Related]
3. A novel small-molecule selective activator of homomeric GIRK4 channels. Cui M; Xu K; Gada KD; Shalomov B; Ban M; Eptaminitaki GC; Kawano T; Plant LD; Dascal N; Logothetis DE J Biol Chem; 2022 Jun; 298(6):102009. PubMed ID: 35525275 [TBL] [Abstract][Full Text] [Related]
4. A computational model predicts that Gβγ acts at a cleft between channel subunits to activate GIRK1 channels. Mahajan R; Ha J; Zhang M; Kawano T; Kozasa T; Logothetis DE Sci Signal; 2013 Aug; 6(288):ra69. PubMed ID: 23943609 [TBL] [Abstract][Full Text] [Related]
6. Discovery and Characterization of VU0529331, a Synthetic Small-Molecule Activator of Homomeric G Protein-Gated, Inwardly Rectifying, Potassium (GIRK) Channels. Kozek KA; Du Y; Sharma S; Prael FJ; Spitznagel BD; Kharade SV; Denton JS; Hopkins CR; Weaver CD ACS Chem Neurosci; 2019 Jan; 10(1):358-370. PubMed ID: 30136838 [TBL] [Abstract][Full Text] [Related]
7. Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K+ channel by GalphaiGDP and Gbetagamma. Rubinstein M; Peleg S; Berlin S; Brass D; Keren-Raifman T; Dessauer CW; Ivanina T; Dascal N J Physiol; 2009 Jul; 587(Pt 14):3473-91. PubMed ID: 19470775 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms underlying the activation of G-protein-gated inwardly rectifying K+ (GIRK) channels by the novel anxiolytic drug, ML297. Wydeven N; Marron Fernandez de Velasco E; Du Y; Benneyworth MA; Hearing MC; Fischer RA; Thomas MJ; Weaver CD; Wickman K Proc Natl Acad Sci U S A; 2014 Jul; 111(29):10755-60. PubMed ID: 25002517 [TBL] [Abstract][Full Text] [Related]
9. Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IKACh. Corey S; Krapivinsky G; Krapivinsky L; Clapham DE J Biol Chem; 1998 Feb; 273(9):5271-8. PubMed ID: 9478984 [TBL] [Abstract][Full Text] [Related]
10. Identification of a G-Protein-Independent Activator of GIRK Channels. Zhao Y; Ung PM; Zahoránszky-Kőhalmi G; Zakharov AV; Martinez NJ; Simeonov A; Glaaser IW; Rai G; Schlessinger A; Marugan JJ; Slesinger PA Cell Rep; 2020 Jun; 31(11):107770. PubMed ID: 32553165 [TBL] [Abstract][Full Text] [Related]
12. A revised mechanism of action of hyperaldosteronism-linked mutations in cytosolic domains of GIRK4 (KCNJ5). Shalomov B; Handklo-Jamal R; Reddy HP; Theodor N; Bera AK; Dascal N J Physiol; 2022 Mar; 600(6):1419-1437. PubMed ID: 34957562 [TBL] [Abstract][Full Text] [Related]
13. Binding of the G protein betagamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels. Huang CL; Jan YN; Jan LY FEBS Lett; 1997 Apr; 405(3):291-8. PubMed ID: 9108307 [TBL] [Abstract][Full Text] [Related]
14. Recruitment of Gβγ controls the basal activity of G-protein coupled inwardly rectifying potassium (GIRK) channels: crucial role of distal C terminus of GIRK1. Kahanovitch U; Tsemakhovich V; Berlin S; Rubinstein M; Styr B; Castel R; Peleg S; Tabak G; Dessauer CW; Ivanina T; Dascal N J Physiol; 2014 Dec; 592(24):5373-90. PubMed ID: 25384780 [TBL] [Abstract][Full Text] [Related]
15. Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Chan KW; Sui JL; Vivaudou M; Logothetis DE Proc Natl Acad Sci U S A; 1996 Nov; 93(24):14193-8. PubMed ID: 8943083 [TBL] [Abstract][Full Text] [Related]
16. Ivermectin activates GIRK channels in a PIP Chen IS; Tateyama M; Fukata Y; Uesugi M; Kubo Y J Physiol; 2017 Sep; 595(17):5895-5912. PubMed ID: 28715108 [TBL] [Abstract][Full Text] [Related]
17. On the mechanism of GIRK2 channel gating by phosphatidylinositol bisphosphate, sodium, and the Gβγ dimer. Li D; Jin T; Gazgalis D; Cui M; Logothetis DE J Biol Chem; 2019 Dec; 294(49):18934-18948. PubMed ID: 31659119 [TBL] [Abstract][Full Text] [Related]
18. Molecular mechanism for sodium-dependent activation of G protein-gated K+ channels. Ho IH; Murrell-Lagnado RD J Physiol; 1999 Nov; 520 Pt 3(Pt 3):645-51. PubMed ID: 10545132 [TBL] [Abstract][Full Text] [Related]
20. Structural elements in the Girk1 subunit that potentiate G protein-gated potassium channel activity. Wydeven N; Young D; Mirkovic K; Wickman K Proc Natl Acad Sci U S A; 2012 Dec; 109(52):21492-7. PubMed ID: 23236146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]