These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
404 related articles for article (PubMed ID: 36142787)
1. From AKI to CKD: Maladaptive Repair and the Underlying Mechanisms. Wang Z; Zhang C Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142787 [TBL] [Abstract][Full Text] [Related]
2. A short treatment with resveratrol after a renal ischaemia-reperfusion injury prevents maladaptive repair and long-term chronic kidney disease in rats. Martínez-Rojas MÁ; Balcázar H; Ponce-Nava MS; González-Soria I; Marquina-Castillo B; Pérez-Villalva R; Bobadilla NA J Physiol; 2024 Apr; 602(8):1835-1852. PubMed ID: 38529522 [TBL] [Abstract][Full Text] [Related]
3. Dynamically visualizing profibrotic maladaptive repair after acute kidney injury by fibroblast activation protein imaging. Huang J; Cui S; Chi X; Cong A; Yang X; Su H; Zhou Z; Su C; Hu Z; Huang Z; Luo J; Wang G; Jiang Y; Tang G; Cao W Kidney Int; 2024 Nov; 106(5):826-839. PubMed ID: 39098582 [TBL] [Abstract][Full Text] [Related]
4. Pathophysiology of AKI to CKD progression. Sato Y; Takahashi M; Yanagita M Semin Nephrol; 2020 Mar; 40(2):206-215. PubMed ID: 32303283 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial dysfunction and the AKI-to-CKD transition. Jiang M; Bai M; Lei J; Xie Y; Xu S; Jia Z; Zhang A Am J Physiol Renal Physiol; 2020 Dec; 319(6):F1105-F1116. PubMed ID: 33073587 [TBL] [Abstract][Full Text] [Related]
6. Acute Kidney Injury to Chronic Kidney Disease Transition. Fiorentino M; Grandaliano G; Gesualdo L; Castellano G Contrib Nephrol; 2018; 193():45-54. PubMed ID: 29393158 [TBL] [Abstract][Full Text] [Related]
7. Non-coding RNAs in kidney injury and repair. Liu Z; Wang Y; Shu S; Cai J; Tang C; Dong Z Am J Physiol Cell Physiol; 2019 Aug; 317(2):C177-C188. PubMed ID: 30969781 [TBL] [Abstract][Full Text] [Related]
8. AKI: an increasingly recognized risk factor for CKD development and progression. Kurzhagen JT; Dellepiane S; Cantaluppi V; Rabb H J Nephrol; 2020 Dec; 33(6):1171-1187. PubMed ID: 32651850 [TBL] [Abstract][Full Text] [Related]
9. Pathway from Acute Kidney Injury to Chronic Kidney Disease: Molecules Involved in Renal Fibrosis. Niculae A; Gherghina ME; Peride I; Tiglis M; Nechita AM; Checherita IA Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762322 [TBL] [Abstract][Full Text] [Related]
10. 14-3-3ζ inhibits maladaptive repair in renal tubules by regulating YAP and reduces renal interstitial fibrosis. Wang TT; Wu LL; Wu J; Zhang LS; Shen WJ; Zhao YH; Liu JN; Fu B; Wang X; Li QG; Bai XY; Wang LQ; Chen XM Acta Pharmacol Sin; 2023 Feb; 44(2):381-392. PubMed ID: 35840657 [TBL] [Abstract][Full Text] [Related]
11. Cellular communication network factor 2 (CCN2) promotes the progression of acute kidney injury to chronic kidney disease. Inoue T; Kusano T; Amano H; Nakamoto H; Okada H Biochem Biophys Res Commun; 2019 Sep; 517(1):96-102. PubMed ID: 31320136 [TBL] [Abstract][Full Text] [Related]
12. Progression of Chronic Kidney Disease After Acute Kidney Injury: Role of Self-Perpetuating Versus Hemodynamic-Induced Fibrosis. Picken M; Long J; Williamson GA; Polichnowski AJ Hypertension; 2016 Oct; 68(4):921-8. PubMed ID: 27550923 [TBL] [Abstract][Full Text] [Related]
13. Factors affecting the transition of acute kidney injury to chronic kidney disease: Potential mechanisms and future perspectives. Ogbadu J; Singh G; Aggarwal D Eur J Pharmacol; 2019 Dec; 865():172711. PubMed ID: 31589870 [TBL] [Abstract][Full Text] [Related]
14. N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation. Li C; Xie N; Li Y; Liu C; Hou FF; Wang J Free Radic Biol Med; 2019 Jan; 130():512-527. PubMed ID: 30447351 [TBL] [Abstract][Full Text] [Related]
15. Capillary rarefaction is more closely associated with CKD progression after cisplatin, rhabdomyolysis, and ischemia-reperfusion-induced AKI than renal fibrosis. Menshikh A; Scarfe L; Delgado R; Finney C; Zhu Y; Yang H; de Caestecker MP Am J Physiol Renal Physiol; 2019 Nov; 317(5):F1383-F1397. PubMed ID: 31509009 [TBL] [Abstract][Full Text] [Related]
16. Role of renin-angiotensin system in acute kidney injury-chronic kidney disease transition. Chou YH; Chu TS; Lin SL Nephrology (Carlton); 2018 Oct; 23 Suppl 4():121-125. PubMed ID: 30298669 [TBL] [Abstract][Full Text] [Related]
17. The AKI-to-CKD Transition: The Role of Uremic Toxins. André C; Bodeau S; Kamel S; Bennis Y; Caillard P Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003343 [TBL] [Abstract][Full Text] [Related]
18. Hypoxia as a key player in the AKI-to-CKD transition. Tanaka S; Tanaka T; Nangaku M Am J Physiol Renal Physiol; 2014 Dec; 307(11):F1187-95. PubMed ID: 25350978 [TBL] [Abstract][Full Text] [Related]