These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36143548)

  • 1. Study on Creep-Fatigue Mechanical Behavior and Life Prediction of Ti
    Wang Y; Wang X; Yang Y; Lan X; Zhang Z; Li H
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue Fracture Analysis on 2524 Aluminum Alloy with the Influence of Creep-Aging Forming Processes.
    Ma L; Liu C; Ma M; Wang Z; Wu D; Liu L; Song M
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Surface Integrity on Hot Fatigue Life of Ti
    Wang Y; Zhou Y; Sha A; Li X
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creep-Fatigue Experiment and Life Prediction Study of Piston 2A80 Aluminum Alloy.
    Dong Y; Liu J; Liu Y; Li H; Zhang X; Hu X
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33805819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-Controlled Creep-Fatigue of an Advanced Austenitic Stainless Steel at Elevated Temperatures.
    Alsmadi ZY; Abouelella H; Alomari AS; Murty KL
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Concise Binomial Model for Nonlinear Creep-Fatigue Crack Growth Behavior at Elevated Temperatures.
    Mao J; Xiao Z; Hu D; Guo X; Wang R
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creep-Fatigue Crack Initiation Simulation of a Modified 12% Cr Steel Based on Grain Boundary Cavitation and Plastic Slip Accumulation.
    Jin X; Wang RZ; Shu Y; Fei JW; Wen JF; Tu ST
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions.
    Wang M; Du J; Deng Q
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creep contributes to the fatigue behavior of bovine trabecular bone.
    Bowman SM; Guo XE; Cheng DW; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech Eng; 1998 Oct; 120(5):647-54. PubMed ID: 10412444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metallographic and Mechanical Research of the O-Ti
    Małecka J; Rozumek D
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32640599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Creep Damage on the Fatigue Life of P91 Steel.
    Mroziński S; Lis Z; Egner H
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress Ratio and Notch Effects on the Very High Cycle Fatigue Properties of a Near-Alpha Titanium Alloy.
    Yang K; Zhong B; Huang Q; He C; Huang ZY; Wang Q; Liu YJ
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30235842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation Mechanism of Dilute Region and Microstructure Evolution in Laser Solid Forming TA15/Ti
    Tan H; Mi Z; Zhu Y; Yan Z; Hou X; Chen J
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31979342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Relationship between Microstructure and Fracture Behavior of TiAl/Ti
    Liao M; Tian H; Zhao L; Zhang B; He J
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain.
    Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crack Initiation Mechanism and Life Prediction of Ti60 Titanium Alloy Considering Stress Ratios Effect in Very High Cycle Fatigue Regime.
    He R; Peng H; Liu F; Khan MK; Chen Y; He C; Wang C; Wang Q; Liu Y
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuum damage mechanics (CDM) modelling demonstrates that ligament fatigue damage accumulates by different mechanisms than creep damage.
    Schwab TD; Johnston CR; Oxland TR; Thornton GM
    J Biomech; 2007; 40(14):3279-84. PubMed ID: 17582420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure, Tensile, and Creep Behaviors of Ti-22Al-25Nb (at.%) Orthorhombic Alloy with Equiaxed Microstructure.
    Wang W; Zeng W; Sun Y; Zhou H; Liang X
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30036934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.
    Waanders D; Janssen D; Mann KA; Verdonschot N
    J Biomech; 2010 Nov; 43(15):3028-34. PubMed ID: 20692663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the Mechanical Behavior, Creep Resistance and Uniaxial Fatigue Strength of Martensitic Steel X46Cr13.
    Brnic J; Krscanski S; Lanc D; Brcic M; Turkalj G; Canadija M; Niu J
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.