These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 36143573)
1. New SHapley Additive ExPlanations (SHAP) Approach to Evaluate the Raw Materials Interactions of Steel-Fiber-Reinforced Concrete. Anjum M; Khan K; Ahmad W; Ahmad A; Amin MN; Nafees A Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143573 [TBL] [Abstract][Full Text] [Related]
2. Compressive Strength Estimation of Steel-Fiber-Reinforced Concrete and Raw Material Interactions Using Advanced Algorithms. Khan K; Ahmad W; Amin MN; Ahmad A; Nazar S; Alabdullah AA Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956580 [TBL] [Abstract][Full Text] [Related]
3. Use of Artificial Intelligence for Predicting Parameters of Sustainable Concrete and Raw Ingredient Effects and Interactions. Amin MN; Ahmad W; Khan K; Ahmad A; Nazar S; Alabdullah AA Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955144 [TBL] [Abstract][Full Text] [Related]
4. Data-Driven Techniques for Evaluating the Mechanical Strength and Raw Material Effects of Steel Fiber-Reinforced Concrete. Al-Hashem MN; Amin MN; Ahmad W; Khan K; Ahmad A; Ehsan S; Al-Ahmad QMS; Qadir MG Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234267 [TBL] [Abstract][Full Text] [Related]
5. Flexural Strength Prediction of Steel Fiber-Reinforced Concrete Using Artificial Intelligence. Zheng D; Wu R; Sufian M; Kahla NB; Atig M; Deifalla AF; Accouche O; Azab M Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897626 [TBL] [Abstract][Full Text] [Related]
6. Using Machine Learning Algorithms to Estimate the Compressive Property of High Strength Fiber Reinforced Concrete. Dai L; Wu X; Zhou M; Ahmad W; Ali M; Sabri MMS; Salmi A; Ewais DYZ Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806575 [TBL] [Abstract][Full Text] [Related]
7. Compressive Strength of Steel Fiber-Reinforced Concrete Employing Supervised Machine Learning Techniques. Li Y; Zhang Q; Kamiński P; Deifalla AF; Sufian M; Dyczko A; Kahla NB; Atig M Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744270 [TBL] [Abstract][Full Text] [Related]
8. Use of Artificial Intelligence Methods for Predicting the Strength of Recycled Aggregate Concrete and the Influence of Raw Ingredients. Pan X; Xiao Y; Suhail SA; Ahmad W; Murali G; Salmi A; Mohamed A Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744254 [TBL] [Abstract][Full Text] [Related]
9. Compressive Strength Evaluation of Ultra-High-Strength Concrete by Machine Learning. Shen Z; Deifalla AF; Kamiński P; Dyczko A Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629548 [TBL] [Abstract][Full Text] [Related]
10. Application of Ensemble Machine Learning Methods to Estimate the Compressive Strength of Fiber-Reinforced Nano-Silica Modified Concrete. Anjum M; Khan K; Ahmad W; Ahmad A; Amin MN; Nafees A Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146051 [TBL] [Abstract][Full Text] [Related]
11. Ensemble Tree-Based Approach towards Flexural Strength Prediction of FRP Reinforced Concrete Beams. Amin MN; Iqbal M; Khan K; Qadir MG; Shalabi FI; Jamal A Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406177 [TBL] [Abstract][Full Text] [Related]
12. Investigating the Ultrasonic Pulse Velocity of Concrete Containing Waste Marble Dust and Its Estimation Using Artificial Intelligence. Yang D; Zhao J; Suhail SA; Ahmad W; Kamiński P; Dyczko A; Salmi A; Mohamed A Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744370 [TBL] [Abstract][Full Text] [Related]
13. Flexural Toughness Test and Inversion Research on a Thermal Conductivity Formula on Steel Fiber-Reinforced Concrete Components Post-Fire. Li H; Chen B; Zhu K; Gong X Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897534 [TBL] [Abstract][Full Text] [Related]
14. Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms. Ahmad A; Ahmad W; Chaiyasarn K; Ostrowski KA; Aslam F; Zajdel P; Joyklad P Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641204 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the Strength and Impact of Raw Ingredients of Cement Mortar Incorporating Waste Glass Powder Using Machine Learning and SHapley Additive ExPlanations (SHAP) Methods. Alkadhim HA; Amin MN; Ahmad W; Khan K; Nazar S; Faraz MI; Imran M Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295407 [TBL] [Abstract][Full Text] [Related]
16. Advanced machine learning algorithms to evaluate the effects of the raw ingredients on flowability and compressive strength of ultra-high-performance concrete. Qian Y; Sufian M; Accouche O; Azab M PLoS One; 2022; 17(12):e0278161. PubMed ID: 36548370 [TBL] [Abstract][Full Text] [Related]
17. Comparison of various machine learning algorithms used for compressive strength prediction of steel fiber-reinforced concrete. Pakzad SS; Roshan N; Ghalehnovi M Sci Rep; 2023 Mar; 13(1):3646. PubMed ID: 36871074 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete. Khan K; Ahmad W; Amin MN; Aslam F; Ahmad A; Al-Faiad MA Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629456 [TBL] [Abstract][Full Text] [Related]
19. In-Depth Analysis of Cement-Based Material Incorporating Metakaolin Using Individual and Ensemble Machine Learning Approaches. Bulbul AMR; Khan K; Nafees A; Amin MN; Ahmad W; Usman M; Nazar S; Arab AMA Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363356 [TBL] [Abstract][Full Text] [Related]
20. Forecasting the strength of preplaced aggregate concrete using interpretable machine learning approaches. Javed MF; Fawad M; Lodhi R; Najeh T; Gamil Y Sci Rep; 2024 Apr; 14(1):8381. PubMed ID: 38600161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]