These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36143611)

  • 1. Investigating Morphology and Breakage Evolution Characteristics of Railroad Ballasts over Distinct Supports Subjected to Impact Loading.
    Xiao Y; Jiang Y; Tan P; Kong K; Ali J; Mustafina R; Zhu H; Cai D
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing Particle-Scale Acceleration of Mud-Pumping Ballast Bed of Heavy-Haul Railway Subjected to Maintenance Operations.
    Wang M; Xiao Y; Li W; Zhao H; Hua W; Jiang Y
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-mechanical investigation of railway ballast behavior under cyclic loading in a box test using DEM: effects of elastic layers and ballast types.
    Kumar N; Suhr B; Marschnig S; Dietmaier P; Marte C; Six K
    Granul Matter; 2019; 21(4):106. PubMed ID: 31708679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient DEM simulations of railway ballast using simple particle shapes.
    Suhr B; Six K
    Granul Matter; 2022; 24(4):114. PubMed ID: 36119809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of osmotic ballast properties on the performance of a concentration gradient battery.
    Liu F; Kingsbury RS; Rech JJ; You W; Coronell O
    Water Res; 2022 Apr; 212():118076. PubMed ID: 35077940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Sleeper-Ballast Particle Contact on Lateral Resistance of Concrete Sleepers in Ballasted Railway Tracks.
    Chalabii J; Movahedi Rad M; Hadizadeh Raisi E; Esfandiari Mehni R
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrete element modelling of under sleeper pads using a box test.
    Li H; McDowell GR
    Granul Matter; 2018; 20(2):26. PubMed ID: 31007579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DEM modelling of railway ballast using the Conical Damage Model: a comprehensive parametrisation strategy.
    Suhr B; Skipper WA; Lewis R; Six K
    Granul Matter; 2022; 24(1):40. PubMed ID: 35125957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the Permeability of Potential Ballast Rocks from Northern Rio de Janeiro State under Different Fouling Rates after Sodium Sulfate Attack.
    Souza RN; de Castro Xavier G; da Costa KOB; Alexandre J; Ribeiro RP; de Azevedo ARG
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete Element Analysis of Shape Effect on the Shear Behaviors of Ballast.
    Hou W; Li A; Song W
    Sci Rep; 2023 Sep; 13(1):14810. PubMed ID: 37684325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Condition Assessment Index of Ballast Track Using Ground-Penetrating Radar (GPR).
    Birhane FN; Choi YT; Lee SJ
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape analysis of railway ballast stones: curvature-based calculation of particle angularity.
    Suhr B; Skipper WA; Lewis R; Six K
    Sci Rep; 2020 Apr; 10(1):6045. PubMed ID: 32269233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of an Unsupported Sleeper on the Vertical Bearing Characteristics of Heavy-Haul Railway Ballast.
    Liu D; Su C; Zhang D; Lan C
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple particle shapes for DEM simulations of railway ballast: influence of shape descriptors on packing behaviour.
    Suhr B; Six K
    Granul Matter; 2020; 22(2):43. PubMed ID: 32226281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-of-the-Art Review of Ground Penetrating Radar (GPR) Applications for Railway Ballast Inspection.
    Wang S; Liu G; Jing G; Feng Q; Liu H; Guo Y
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of ballast specific gravity and velocity gradient in ballasted flocculation.
    Qasim M; Park S; Kim JO
    J Hazard Mater; 2020 Nov; 399():122970. PubMed ID: 32540703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study on the effects of water content on the compression characteristics and particle breakage of calcareous sand.
    Liu X; Wang X; Wei X; Luo M; Chen X; Zhong L
    Sci Rep; 2024 Mar; 14(1):6853. PubMed ID: 38514767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of media for the design of ballasted flocculation processes.
    Lapointe M; Barbeau B
    Water Res; 2018 Dec; 147():25-32. PubMed ID: 30296606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of ellipsoidal particle shape on pebble breakage in gravel.
    Tuitz C; Exner U; Frehner M; Grasemann B
    Int J Rock Mech Min Sci (1997); 2012 Sep; 54(3-8):70-79. PubMed ID: 26321870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ground reaction force adaptation during cross-slope walking on railroad ballast.
    Wang H; An L; Feng X; Zhao J; Merryweather A; Xu H
    Gait Posture; 2020 Jan; 75():66-71. PubMed ID: 31605898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.