BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36143728)

  • 1. Influence of Machining Parameters on Cutting and Chip-Formation Process during Cortical Bone Orthogonal Machining.
    Zawadzki P; Talar R; Patalas A; Legutko S
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone Abrasive Machining: Influence of Tool Geometry and Cortical Bone Anisotropic Structure on Crack Propagation.
    Zawadzki P; Talar R
    J Funct Biomater; 2022 Sep; 13(3):. PubMed ID: 36135588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chip Formation and Orthogonal Cutting Optimisation of Unidirectional Carbon Fibre Composites.
    Abena A; Soo SL; Ataya S; Hassanin H; El-Sayed MA; Ahmadein M; Alsaleh NA; Ahmed MMZ; Essa K
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Cutting Force and Chip Formation from the True Stress-Strain Relation Using an Explicit FEM for Polymer Machining.
    Yang B; Wang H; Fu K; Wang C
    Polymers (Basel); 2022 Jan; 14(1):. PubMed ID: 35012211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proposal for a Novel Abrasive Machining Method for Preparing the Surface of Periarticular Tissue during Orthopedic Surgery on Hip Joints.
    Zawadzki P
    J Funct Biomater; 2021 Sep; 12(3):. PubMed ID: 34564199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Influence of Osteon Orientation on Surface Topography Parameters after Machining of Cortical Bone Tissue.
    Zawadzki P; Talar R; Grochalski K; Dąbrowski M
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating bone chip formation in craniotomy.
    Huiyu H; Chengyong W; Yue Z; Yanbin Z; Linlin X; Guoneng X; Danna Z; Bin C; Haoan C
    Proc Inst Mech Eng H; 2017 Oct; 231(10):959-974. PubMed ID: 28825358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical modeling, Sobol sensitivity analysis and optimization of single-tip tool geometrical parameters in the cortical bone machining process.
    Tahmasbi V; Safari M; Joudaki J
    Proc Inst Mech Eng H; 2020 Jan; 234(1):28-38. PubMed ID: 31617818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machining of bone: Analysis of cutting force and surface roughness by turning process.
    Noordin MY; Jiawkok N; Ndaruhadi PY; Kurniawan D
    Proc Inst Mech Eng H; 2015 Nov; 229(11):761-8. PubMed ID: 26399875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental study and sensitivity analysis of force behavior in cortical bone milling.
    Tahmasbi V; Qasemi M; Ghasemi R; Gholami R
    Med Eng Phys; 2022 Jul; 105():103821. PubMed ID: 35781391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Analysis of the Effect of Abrasive/Tool Wear on the Ductile Machining of Fused Silica from the Perspective of Stress.
    Li M; Guo X; Yuan S; Zhao B; Qi Y; Zhang S; Guo D; Zhou P
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthogonal cutting of cancellous bone with application to the harvesting of bone autograft.
    Malak SF; Anderson IA
    Med Eng Phys; 2008 Jul; 30(6):717-24. PubMed ID: 17825598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of material removal in orthogonal cutting of cortical bone.
    Bai W; Shu L; Sun R; Xu J; Silberschmidt VV; Sugita N
    J Mech Behav Biomed Mater; 2020 Apr; 104():103618. PubMed ID: 31929098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-scale machining of polycrystalline coppers - effects of grain size and machining parameters.
    Shi J; Wang Y; Yang X
    Nanoscale Res Lett; 2013 Nov; 8(1):500. PubMed ID: 24267785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the cutting edge angle of a titanium instrument on chip formation in the machining of trabecular and cortical bone.
    von See C; Stoetzer M; Ruecker M; Wagner M; Schumann P; Gellrich NC
    Int J Oral Maxillofac Implants; 2014; 29(4):942-8. PubMed ID: 25032776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Cutting Device Design to Study the Orthogonal Cutting of CFRP Laminates at Different Cutting Speeds.
    Criado V; Feito N; Cantero Guisández JL; Díaz-Álvarez J
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics.
    Li J; Meng W; Dong K; Zhang X; Zhao W
    Nanoscale Res Lett; 2018 Jan; 13(1):11. PubMed ID: 29327287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Modeling of Working Normal Rake Angles and Working Inclination Angles of Active Cutting Edges and Application in Cutting Force Prediction.
    Li P; Chang Z
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turning Titanium Alloy, Grade 5 ELI, With the Implementation of High Pressure Coolant.
    Słodki B; Zębala W; Struzikiewicz G
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30845682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical modelling of orthogonal cutting: application to woodworking with a bench plane.
    Nairn JA
    Interface Focus; 2016 Jun; 6(3):20150110. PubMed ID: 27274800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.