BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36144013)

  • 1. CO
    Ogo A; Okayama S; Nakatani M; Hashimoto M
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simplified PDMS microfluidic device with a built-in suction actuator for rapid production of monodisperse water-in-oil droplets.
    Nakatani M; Tanaka Y; Okayama S; Hashimoto M
    Electrophoresis; 2020 Sep; ():. PubMed ID: 32920836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Analysis of Laser Micromachining of Microchannels in Common Microfluidic Substrates.
    Konari PR; Clayton YD; Vaughan MB; Khandaker M; Hossan MR
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33525394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator.
    Murata Y; Nakashoji Y; Kondo M; Tanaka Y; Hashimoto M
    Electrophoresis; 2018 Feb; 39(3):504-511. PubMed ID: 28815723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO
    Nasser GA; Fath El-Bab AMR; Abdel-Mawgood AL; Mohamed H; Saleh AM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31600884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hands-off preparation of monodisperse emulsion droplets using a poly(dimethylsiloxane) microfluidic chip for droplet digital PCR.
    Tanaka H; Yamamoto S; Nakamura A; Nakashoji Y; Okura N; Nakamoto N; Tsukagoshi K; Hashimoto M
    Anal Chem; 2015 Apr; 87(8):4134-43. PubMed ID: 25822401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations.
    Qu S; Chen X; Chen D; Yang P; Chen G
    Electrophoresis; 2006 Dec; 27(24):4910-8. PubMed ID: 17120260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stainless steel pinholes for fast fabrication of high-performance microchip electrophoresis devices by CO2 laser ablation.
    Yap YC; Guijt RM; Dickson TC; King AE; Breadmore MC
    Anal Chem; 2013 Nov; 85(21):10051-6. PubMed ID: 24063252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel abrasive water jet machining technique for rapid fabrication of three-dimensional microfluidic components.
    Azarsa E; Jeyhani M; Ibrahim A; Tsai SSH; Papini M
    Biomicrofluidics; 2020 Jul; 14(4):044103. PubMed ID: 32670461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inexpensive and nonconventional fabrication of microfluidic devices in PMMA based on a soft-embossing protocol.
    Lobo-Júnior EO; Chagas CLS; Duarte LC; Cardoso TMG; de Souza FR; Lima RS; Coltro WKT
    Electrophoresis; 2020 Oct; 41(18-19):1641-1650. PubMed ID: 32726462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct deep UV lithography to micropattern PMMA for stem cell culture.
    Samal P; Kumar Samal JR; Rho HS; van Beurden D; van Blitterswijk C; Truckenmüller R; Giselbrecht S
    Mater Today Bio; 2023 Oct; 22():100779. PubMed ID: 37701129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfabrication of Nonplanar Polymeric Microfluidics.
    Chen PC; Lee CY; Duong LH
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A "place n play" modular pump for portable microfluidic applications.
    Li G; Luo Y; Chen Q; Liao L; Zhao J
    Biomicrofluidics; 2012 Mar; 6(1):14118-1411816. PubMed ID: 22685507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microchip electrophoresis for DNA separation by wire-imprinted microchannels on PMMA substrates.
    Chen SH
    Methods Mol Biol; 2007; 385():1-8. PubMed ID: 18365700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer.
    Koesdjojo MT; Tennico YH; Remcho VT
    Anal Chem; 2008 Apr; 80(7):2311-8. PubMed ID: 18303914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multilayer Soft Photolithography Fabrication of Microfluidic Devices Using a Custom-Built Wafer-Scale PDMS Slab Aligner and Cost-Efficient Equipment.
    Nguyen T; Sarkar T; Tran T; Moinuddin SM; Saha D; Ahsan F
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets.
    Muluneh M; Issadore D
    Lab Chip; 2013 Dec; 13(24):4750-4. PubMed ID: 24166156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition.
    Trantidou T; Elani Y; Parsons E; Ces O
    Microsyst Nanoeng; 2017; 3():16091. PubMed ID: 31057854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reproducible method for
    Cottet J; Vaillier C; Buret F; Frénéa-Robin M; Renaud P
    Biomicrofluidics; 2017 Nov; 11(6):064111. PubMed ID: 29308100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple One-Step and Rapid Patterning of PDMS Microfluidic Device Wettability for PDMS Shell Production.
    Feng C; Takahashi K; Zhu J
    Front Bioeng Biotechnol; 2022; 10():891213. PubMed ID: 35519623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.