These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 36144013)
1. CO Ogo A; Okayama S; Nakatani M; Hashimoto M Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144013 [TBL] [Abstract][Full Text] [Related]
2. A simplified PDMS microfluidic device with a built-in suction actuator for rapid production of monodisperse water-in-oil droplets. Nakatani M; Tanaka Y; Okayama S; Hashimoto M Electrophoresis; 2020 Dec; 41(24):2114-2121. PubMed ID: 32920836 [TBL] [Abstract][Full Text] [Related]
3. Experimental Analysis of Laser Micromachining of Microchannels in Common Microfluidic Substrates. Konari PR; Clayton YD; Vaughan MB; Khandaker M; Hossan MR Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33525394 [TBL] [Abstract][Full Text] [Related]
4. Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator. Murata Y; Nakashoji Y; Kondo M; Tanaka Y; Hashimoto M Electrophoresis; 2018 Feb; 39(3):504-511. PubMed ID: 28815723 [TBL] [Abstract][Full Text] [Related]
6. Hands-off preparation of monodisperse emulsion droplets using a poly(dimethylsiloxane) microfluidic chip for droplet digital PCR. Tanaka H; Yamamoto S; Nakamura A; Nakashoji Y; Okura N; Nakamoto N; Tsukagoshi K; Hashimoto M Anal Chem; 2015 Apr; 87(8):4134-43. PubMed ID: 25822401 [TBL] [Abstract][Full Text] [Related]
7. Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations. Qu S; Chen X; Chen D; Yang P; Chen G Electrophoresis; 2006 Dec; 27(24):4910-8. PubMed ID: 17120260 [TBL] [Abstract][Full Text] [Related]
8. Stainless steel pinholes for fast fabrication of high-performance microchip electrophoresis devices by CO2 laser ablation. Yap YC; Guijt RM; Dickson TC; King AE; Breadmore MC Anal Chem; 2013 Nov; 85(21):10051-6. PubMed ID: 24063252 [TBL] [Abstract][Full Text] [Related]
9. A novel abrasive water jet machining technique for rapid fabrication of three-dimensional microfluidic components. Azarsa E; Jeyhani M; Ibrahim A; Tsai SSH; Papini M Biomicrofluidics; 2020 Jul; 14(4):044103. PubMed ID: 32670461 [TBL] [Abstract][Full Text] [Related]
10. Inexpensive and nonconventional fabrication of microfluidic devices in PMMA based on a soft-embossing protocol. Lobo-Júnior EO; Chagas CLS; Duarte LC; Cardoso TMG; de Souza FR; Lima RS; Coltro WKT Electrophoresis; 2020 Oct; 41(18-19):1641-1650. PubMed ID: 32726462 [TBL] [Abstract][Full Text] [Related]
11. Direct deep UV lithography to micropattern PMMA for stem cell culture. Samal P; Kumar Samal JR; Rho HS; van Beurden D; van Blitterswijk C; Truckenmüller R; Giselbrecht S Mater Today Bio; 2023 Oct; 22():100779. PubMed ID: 37701129 [TBL] [Abstract][Full Text] [Related]
13. A "place n play" modular pump for portable microfluidic applications. Li G; Luo Y; Chen Q; Liao L; Zhao J Biomicrofluidics; 2012 Mar; 6(1):14118-1411816. PubMed ID: 22685507 [TBL] [Abstract][Full Text] [Related]
14. Microchip electrophoresis for DNA separation by wire-imprinted microchannels on PMMA substrates. Chen SH Methods Mol Biol; 2007; 385():1-8. PubMed ID: 18365700 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer. Koesdjojo MT; Tennico YH; Remcho VT Anal Chem; 2008 Apr; 80(7):2311-8. PubMed ID: 18303914 [TBL] [Abstract][Full Text] [Related]
16. Multilayer Soft Photolithography Fabrication of Microfluidic Devices Using a Custom-Built Wafer-Scale PDMS Slab Aligner and Cost-Efficient Equipment. Nguyen T; Sarkar T; Tran T; Moinuddin SM; Saha D; Ahsan F Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014279 [TBL] [Abstract][Full Text] [Related]
17. Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets. Muluneh M; Issadore D Lab Chip; 2013 Dec; 13(24):4750-4. PubMed ID: 24166156 [TBL] [Abstract][Full Text] [Related]
18. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Trantidou T; Elani Y; Parsons E; Ces O Microsyst Nanoeng; 2017; 3():16091. PubMed ID: 31057854 [TBL] [Abstract][Full Text] [Related]
19. A reproducible method for Cottet J; Vaillier C; Buret F; Frénéa-Robin M; Renaud P Biomicrofluidics; 2017 Nov; 11(6):064111. PubMed ID: 29308100 [TBL] [Abstract][Full Text] [Related]
20. Simple One-Step and Rapid Patterning of PDMS Microfluidic Device Wettability for PDMS Shell Production. Feng C; Takahashi K; Zhu J Front Bioeng Biotechnol; 2022; 10():891213. PubMed ID: 35519623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]