These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36144048)

  • 21. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.
    Park HM; Kim TW
    Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrodynamics beyond Navier-Stokes: the slip flow model.
    Yudistiawan WP; Ansumali S; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016705. PubMed ID: 18764079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lattice Boltzmann modeling and simulation of velocity and concentration slip effects on the catalytic reaction rate of strongly nonequimolar reactions in microflows.
    Khatoonabadi M; Prasianakis IN; Mantzaras J
    Phys Rev E; 2022 Dec; 106(6-2):065305. PubMed ID: 36671136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electro-osmosis in kaolinite with pH-dependent surface charge modelling by homogenization.
    Lima SA; Murad MA; Moyne C; Stemmelen D
    An Acad Bras Cienc; 2010 Mar; 82(1):223-42. PubMed ID: 20209253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-Dimensional Simulations of Anisotropic Slip Microflows Using the Discrete Unified Gas Kinetic Scheme.
    Guo W; Hou G
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Slip and barodiffusion phenomena in slow flows of a gas mixture.
    Zhdanov VM
    Phys Rev E; 2017 Mar; 95(3-1):033106. PubMed ID: 28415189
    [TBL] [Abstract][Full Text] [Related]  

  • 29. General continuum boundary conditions for miscible binary fluids from molecular dynamics simulations.
    Denniston C; Robbins MO
    J Chem Phys; 2006 Dec; 125(21):214102. PubMed ID: 17166010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.
    Zheng W; Wang LP; Or D; Lazouskaya V; Jin Y
    Langmuir; 2012 Sep; 28(35):12753-61. PubMed ID: 22867425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microscale boundary conditions of the lattice Boltzmann equation method for simulating microtube flows.
    Zheng L; Guo Z; Shi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016712. PubMed ID: 23005568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Filter-matrix lattice Boltzmann model for microchannel gas flows.
    Zhuo C; Zhong C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053311. PubMed ID: 24329383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How boundary slip controls emergent Darcy flow of liquids in tortuous and in capillary pores.
    Singh K
    Phys Rev E; 2020 Jul; 102(1-1):013101. PubMed ID: 32794951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. State-specific boundary conditions for nonequilibrium gas flows in slip regime.
    Shakurova L; Kustova E
    Phys Rev E; 2022 Mar; 105(3-1):034126. PubMed ID: 35428104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analytical solution to predicting gaseous mass flow rates of microchannels in a wide range of Knudsen numbers.
    Lv Q; Liu X; Wang E; Wang S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013007. PubMed ID: 23944549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved curved-boundary scheme for lattice Boltzmann simulation of microscale gas flow with second-order slip condition.
    Dai W; Wu H; Liu Z; Zhang S
    Phys Rev E; 2022 Feb; 105(2-2):025310. PubMed ID: 35291094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow.
    Tang GH; Gu XJ; Barber RW; Emerson DR; Zhang YH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026706. PubMed ID: 18850972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discrete effects on boundary conditions of the lattice Boltzmann method for fluid flows with curved no-slip walls.
    Wang L; Tao S; Meng X; Zhang K; Lu G
    Phys Rev E; 2020 Jun; 101(6-1):063307. PubMed ID: 32688558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature profiles and heat fluxes observed in molecular dynamics simulations of force-driven liquid flows.
    Ghorbanian J; Beskok A
    Phys Chem Chem Phys; 2017 Apr; 19(16):10317-10325. PubMed ID: 28398441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows.
    Kim SH; Pitsch H; Boyd ID
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026704. PubMed ID: 18352145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.