These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36144048)

  • 41. Effective slip boundary conditions for flows over nanoscale chemical heterogeneities.
    Hendy SC; Lund NJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066313. PubMed ID: 18233923
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of rough surface topography on gas slip flow in microchannels.
    Zhang C; Chen Y; Deng Z; Shi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016319. PubMed ID: 23005537
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involving the Navier-Stokes equations in the derivation of boundary conditions for the lattice Boltzmann method.
    Verschaeve JC
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2184-92. PubMed ID: 21536564
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Boundary streaming with Navier boundary condition.
    Xie JH; Vanneste J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063010. PubMed ID: 25019882
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phenomenological model of propagation of the elastic waves in a fluid-saturated porous solid with nonzero boundary slip velocity.
    Tsiklauri D
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):843-9. PubMed ID: 12243170
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrodynamics, wall-slip, and normal-stress differences in rarefied granular Poiseuille flow.
    Gupta R; Alam M
    Phys Rev E; 2017 Feb; 95(2-1):022903. PubMed ID: 28297874
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acoustic properties of rarefied gases inside pores of simple geometries.
    Kozlov VF; Fedorov AV; Malmuth ND
    J Acoust Soc Am; 2005 Jun; 117(6):3402-12. PubMed ID: 16018444
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Slip-mediated dewetting of polymer microdroplets.
    McGraw JD; Chan TS; Maurer S; Salez T; Benzaquen M; Raphaƫl E; Brinkmann M; Jacobs K
    Proc Natl Acad Sci U S A; 2016 Feb; 113(5):1168-73. PubMed ID: 26787903
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Macroscopic description of nonequilibrium effects in thermal transpiration flows in annular microchannels.
    Taheri P; Bahrami M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036311. PubMed ID: 23031017
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coupled constitutive relations: a second law based higher-order closure for hydrodynamics.
    Rana AS; Gupta VK; Struchtrup H
    Proc Math Phys Eng Sci; 2018 Oct; 474(2218):20180323. PubMed ID: 30839822
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Derivation of stable Burnett equations for rarefied gas flows.
    Singh N; Jadhav RS; Agrawal A
    Phys Rev E; 2017 Jul; 96(1-1):013106. PubMed ID: 29347080
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic lattice Boltzmann method for microscale gas flows: issues on boundary condition, relaxation time, and regularization.
    Niu XD; Hyodo SA; Munekata T; Suga K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036711. PubMed ID: 17930365
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transport Phenomena of Water in Molecular Fluidic Channels.
    Vo TQ; Kim B
    Sci Rep; 2016 Sep; 6():33881. PubMed ID: 27650138
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular and continuum boundary conditions for a miscible binary fluid.
    Denniston C; Robbins MO
    Phys Rev Lett; 2001 Oct; 87(17):178302. PubMed ID: 11690316
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures.
    Priezjev NV
    J Chem Phys; 2011 Nov; 135(20):204704. PubMed ID: 22128949
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Velocity boundary condition at solid walls in rarefied gas calculations.
    Lockerby DA; Reese JM; Emerson DR; Barber RW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):017303. PubMed ID: 15324210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A review on slip boundary conditions at the nanoscale: recent development and applications.
    Wang R; Chai J; Luo B; Liu X; Zhang J; Wu M; Wei M; Ma Z
    Beilstein J Nanotechnol; 2021; 12():1237-1251. PubMed ID: 34868800
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anisotropic particle in viscous shear flow: Navier slip, reciprocal symmetry, and Jeffery orbit.
    Zhang J; Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033016. PubMed ID: 25871211
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Slip velocity and velocity inversion in a cylindrical Couette flow.
    Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036312. PubMed ID: 19392054
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Force-amplified, single-sided diffused-interface immersed boundary kernel for correct local velocity gradient computation and accurate no-slip boundary enforcement.
    Peng C; Wang LP
    Phys Rev E; 2020 May; 101(5-1):053305. PubMed ID: 32575257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.