These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36144048)

  • 61. Method of submerged Stokeslets for slip flow about ensembles of particles.
    Zhao S; Povitsky A
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3790-801. PubMed ID: 19051936
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A Unified Framework for Modeling Continuum and Rarefied Gas Flows.
    Xiao H; Tang K
    Sci Rep; 2017 Oct; 7(1):13108. PubMed ID: 29026124
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics.
    Lei H; Fedosov DA; Karniadakis GE
    J Comput Phys; 2011 May; 230(10):3765-377. PubMed ID: 21499548
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mapping fluid structuration to flow enhancement in nanofluidic channels.
    Agarwal A; Arya V; Golani B; Bakli C; Chakraborty S
    J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37260011
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of patterned slip on micro- and nanofluidic flows.
    Hendy SC; Jasperse M; Burnell J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016303. PubMed ID: 16090082
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effective Boundary Slip Induced by Surface Roughness and Their Coupled Effect on Convective Heat Transfer of Liquid Flow.
    Pan Y; Jing D; Zhang H; Zhao X
    Entropy (Basel); 2018 May; 20(5):. PubMed ID: 33265424
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Modeling the response of a quartz crystal microbalance under nanoscale confinement and slip boundary conditions.
    Qiao X; Zhang X; Tian Y; Meng Y
    Phys Chem Chem Phys; 2015 Mar; 17(11):7224-31. PubMed ID: 25690933
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Analytical Solutions to the Unsteady Poiseuille Flow of a Second Grade Fluid with Slip Boundary Conditions.
    Baranovskii ES
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38256978
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Slip, immiscibility, and boundary conditions at the liquid-liquid interface.
    Koplik J; Banavar JR
    Phys Rev Lett; 2006 Feb; 96(4):044505. PubMed ID: 16486831
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Capturing Knudsen layer phenomena using a lattice Boltzmann model.
    Zhang YH; Gu XJ; Barber RW; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046704. PubMed ID: 17155209
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Viscoelasticity Enhances Nanometer-Scale Slip in Gigahertz-Frequency Liquid Flows.
    Chakraborty D; Uthe B; Malachosky EW; Pelton M; Sader JE
    J Phys Chem Lett; 2021 Apr; 12(13):3449-3455. PubMed ID: 33789041
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Predicting enhanced mass flow rates in gas microchannels using nonkinetic models.
    Dadzie SK; Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036318. PubMed ID: 23031024
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles.
    Simelane SM; Abelman S; Duncan FD
    Acta Biotheor; 2017 Sep; 65(3):211-231. PubMed ID: 28695410
    [TBL] [Abstract][Full Text] [Related]  

  • 74. cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale.
    Deng M; Li Z; Borodin O; Karniadakis GE
    J Chem Phys; 2016 Oct; 145(14):144109. PubMed ID: 27782504
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Exploring the Klinkenberg effect at different scales.
    Izrar B; Rouet JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053015. PubMed ID: 25493889
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Higher-order effects in rarefied channel flows.
    Struchtrup H; Torrilhon M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046301. PubMed ID: 18999520
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Molecular wall effects: are conditions at a boundary "boundary conditions"?
    Brenner H; Ganesan V
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt B):6879-97. PubMed ID: 11088381
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluation of a lattice Boltzmann method in a complex nanoflow.
    Suga K; Takenaka S; Ito T; Kaneda M; Kinjo T; Hyodo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016701. PubMed ID: 20866755
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dependence of nanoconfined liquid behavior on boundary and bulk factors.
    Sun J; Wang W; Wang HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023020. PubMed ID: 23496623
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels.
    Su W; Lindsay S; Liu H; Wu L
    Phys Rev E; 2017 Aug; 96(2-1):023309. PubMed ID: 28950559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.