These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36144094)

  • 1. Explainable AI for Bearing Fault Prognosis Using Deep Learning Techniques.
    Sanakkayala DC; Varadarajan V; Kumar N; Karan ; Soni G; Kamat P; Kumar S; Patil S; Kotecha K
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning.
    Xu G; Liu M; Jiang Z; Söffker D; Shen W
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lite and Efficient Deep Learning Model for Bearing Fault Diagnosis Using the CWRU Dataset.
    Yoo Y; Jo H; Ban SW
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning-Based Bearing Fault Diagnosis Method for Embedded Systems.
    Pham MT; Kim JM; Kim CH
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33276483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intelligent Defect Diagnosis of Rolling Element Bearings under Variable Operating Conditions Using Convolutional Neural Network and Order Maps.
    Tayyab SM; Chatterton S; Pennacchi P
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fault Detection in Induction Motor Using Time Domain and Spectral Imaging-Based Transfer Learning Approach on Vibration Data.
    Misra S; Kumar S; Sayyad S; Bongale A; Jadhav P; Kotecha K; Abraham A; Gabralla LA
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning-Based Adaptive Neural-Fuzzy Structure Scheme for Bearing Fault Pattern Recognition and Crack Size Identification.
    Piltan F; Duong BP; Kim JM
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Intelligent Fault Diagnosis Method for Bearings with Variable Rotating Speed Based on Pythagorean Spatial Pyramid Pooling CNN.
    Guo S; Yang T; Gao W; Zhang C; Zhang Y
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30424001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Different Bearing Fault Classifiers in Utilizing CNN Feature Extraction Ability.
    Xie W; Li Z; Xu Y; Gardoni P; Li W
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Deep Learning Framework for Imbalance Detection of a Rotating Shaft.
    Wisal M; Oh KY
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model.
    Yan M; Wang X; Wang B; Chang M; Muhammad I
    ISA Trans; 2020 Mar; 98():471-482. PubMed ID: 31492470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis.
    Sohaib M; Kim CH; Kim JM
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multitask-Aided Transfer Learning-Based Diagnostic Framework for Bearings under Inconsistent Working Conditions.
    Hasan MJ; Sohaib M; Kim JM
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based anomaly-onset aware remaining useful life estimation of bearings.
    Kamat PV; Sugandhi R; Kumar S
    PeerJ Comput Sci; 2021; 7():e795. PubMed ID: 34909464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloud Based Fault Diagnosis by Convolutional Neural Network as Time-Frequency RGB Image Recognition of Industrial Machine Vibration with Internet of Things Connectivity.
    Łuczak D; Brock S; Siembab K
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnosis Methodology Based on Deep Feature Learning for Fault Identification in Metallic, Hybrid and Ceramic Bearings.
    Saucedo-Dorantes JJ; Arellano-Espitia F; Delgado-Prieto M; Osornio-Rios RA
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Condition Monitoring of Ball Bearings Based on Machine Learning with Synthetically Generated Data.
    Kahr M; Kovács G; Loinig M; Brückl H
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-layer convolutional dictionary learning network for signal denoising and its application to explainable rolling bearing fault diagnosis.
    Qin Y; Yang R; He B; Chen D; Mao Y
    ISA Trans; 2024 Apr; 147():55-70. PubMed ID: 38309975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel feature extraction method for bearing fault classification with one dimensional ternary patterns.
    Kuncan M; Kaplan K; Mi Naz MR; Kaya Y; Ertunç HM
    ISA Trans; 2020 May; 100():346-357. PubMed ID: 31732141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application Combining VMD and ResNet101 in Intelligent Diagnosis of Motor Faults.
    Lin SL
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.