BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 36144126)

  • 1. Bonding Strategies for Thermoplastics Applicable for Bioanalysis and Diagnostics.
    Trinh KTL; Thai DA; Lee NY
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Thermoplastic Microfluidic Bonding.
    Giri K; Tsao CW
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production.
    Tsao CW
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic device fabrication mediated by surface chemical bonding.
    Sivakumar R; Lee NY
    Analyst; 2020 Jun; 145(12):4096-4110. PubMed ID: 32451519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Fabrication and Bonding of Thermoplastic Microfluidics: A Review.
    Shakeri A; Khan S; Jarad NA; Didar TF
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Patterning of Thermoplastic Elastomers and Robust Bonding to Glass and Thermoplastics for Microfluidic Cell Culture and Organ-on-Chip.
    Schneider S; Brás EJS; Schneider O; Schlünder K; Loskill P
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34070209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.
    Roy E; Galas JC; Veres T
    Lab Chip; 2011 Sep; 11(18):3193-6. PubMed ID: 21796278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave induced thermally assisted solvent-based bonding of biodegradable thermoplastics: an eco-friendly rapid approach for fabrication of microfluidic devices and analyte detection.
    Hasan MS; Borhani S; Ramamurthy SS; Andar A; Ge X; Choa FS; Kostov Y; Rao G
    Sci Rep; 2022 Sep; 12(1):16075. PubMed ID: 36167734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Prototyping of Thermoplastic Microfluidic Devices.
    Novak R; Ng CF; Ingber DE
    Methods Mol Biol; 2018; 1771():161-170. PubMed ID: 29633212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-functionalization of microfluidic platforms made of thermoplastic materials: A review.
    Shakeri A; Jarad NA; Khan S; F Didar T
    Anal Chim Acta; 2022 May; 1209():339283. PubMed ID: 35569863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic device fabrication by thermoplastic hot-embossing.
    Yang S; Devoe DL
    Methods Mol Biol; 2013; 949():115-23. PubMed ID: 23329439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
    Shakeri A; Khan S; Didar TF
    Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan-polydopamine hydrogel complex: a novel green adhesion agent for reversibly bonding thermoplastic microdevice and its application for cell-friendly microfluidic 3D cell culture.
    Trinh KTL; Le NXT; Lee NY
    Lab Chip; 2020 Oct; 20(19):3524-3534. PubMed ID: 32869048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid, cost-efficient fabrication of microfluidic reactors in thermoplastic polymers by combining photolithography and hot embossing.
    Greener J; Li W; Ren J; Voicu D; Pakharenko V; Tang T; Kumacheva E
    Lab Chip; 2010 Feb; 10(4):522-4. PubMed ID: 20126695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoplastic nanofluidic devices for biomedical applications.
    Weerakoon-Ratnayake KM; O'Neil CE; Uba FI; Soper SA
    Lab Chip; 2017 Jan; 17(3):362-381. PubMed ID: 28009883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent Bonding for Fabrication of PMMA and COP Microfluidic Devices.
    Wan AM; Moore TA; Young EW
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.
    Uba FI; Hu B; Weerakoon-Ratnayake K; Oliver-Calixte N; Soper SA
    Lab Chip; 2015 Feb; 15(4):1038-49. PubMed ID: 25511610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Interference-Assisted Thermal Bonding Method for the Fabrication of Thermoplastic Microfluidic Devices.
    Gong Y; Park JM; Lim J
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent Bonding of Thermoplastics to Rubbers for Printable, Reel-to-Reel Processing in Soft Robotics and Microfluidics.
    Taylor JM; Perez-Toralla K; Aispuro R; Morin SA
    Adv Mater; 2018 Feb; 30(7):. PubMed ID: 29315917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.