BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 36144386)

  • 1. Synthetic Peptides against Plant Pathogenic Bacteria.
    Badosa E; Planas M; Feliu L; Montesinos L; Bonaterra A; Montesinos E
    Microorganisms; 2022 Sep; 10(9):. PubMed ID: 36144386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Peptides for Plant Disease Control.
    Montesinos E
    Annu Rev Phytopathol; 2023 Sep; 61():301-324. PubMed ID: 37268004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria.
    Kraszewska J; Beckett MC; James TC; Bond U
    Appl Environ Microbiol; 2016 Jul; 82(14):4288-4298. PubMed ID: 27208129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The γ-Core Motif Peptides of AMPs from Grasses Display Inhibitory Activity against Human and Plant Pathogens.
    Slezina MP; Istomina EA; Kulakovskaya EV; Korostyleva TV; Odintsova TI
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial Peptides With Antibiofilm Activity Against
    Moll L; Badosa E; Planas M; Feliu L; Montesinos E; Bonaterra A
    Front Microbiol; 2021; 12():753874. PubMed ID: 34819923
    [No Abstract]   [Full Text] [Related]  

  • 6. Antimicrobial peptides incorporating non-natural amino acids as agents for plant protection.
    Ng-Choi I; Soler M; Güell I; Badosa E; Cabrefiga J; Bardaji E; Montesinos E; Planas M; Feliu L
    Protein Pept Lett; 2014 Apr; 21(4):357-67. PubMed ID: 24164267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria.
    Monroc S; Badosa E; Feliu L; Planas M; Montesinos E; Bardají E
    Peptides; 2006 Nov; 27(11):2567-74. PubMed ID: 16730857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico prediction of peptide variants from chia (S. hispanica L.) with antimicrobial, antibiofilm, and antioxidant potential.
    León Madrazo A; Segura Campos MR
    Comput Biol Chem; 2022 Jun; 98():107695. PubMed ID: 35605306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Approach Towards Structure Based Antimicrobial Peptide Design for Use in Development of Transgenic Plants: A Strategy for Plant Disease Management.
    Ilyas H; Datta A; Bhunia A
    Curr Med Chem; 2017; 24(13):1350-1364. PubMed ID: 28093983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial peptides and plant disease control.
    Montesinos E
    FEMS Microbiol Lett; 2007 May; 270(1):1-11. PubMed ID: 17371298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pesticidal natural products - status and future potential.
    Marrone PG
    Pest Manag Sci; 2019 Sep; 75(9):2325-2340. PubMed ID: 30941861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial random peptide cocktails: a new approach to fight pathogenic bacteria.
    Amso Z; Hayouka Z
    Chem Commun (Camb); 2019 Feb; 55(14):2007-2014. PubMed ID: 30688322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness.
    Nadal A; Montero M; Company N; Badosa E; Messeguer J; Montesinos L; Montesinos E; Pla M
    BMC Plant Biol; 2012 Sep; 12():159. PubMed ID: 22947243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Antimicrobial Peptides from the Microalgae
    Guzmán F; Wong G; Román T; Cárdenas C; Alvárez C; Schmitt P; Albericio F; Rojas V
    Mar Drugs; 2019 Aug; 17(8):. PubMed ID: 31374937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysozyme enhances the bactericidal effect of BP100 peptide against Erwinia amylovora, the causal agent of fire blight of rosaceous plants.
    Cabrefiga J; Montesinos E
    BMC Microbiol; 2017 Feb; 17(1):39. PubMed ID: 28212623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically encoded libraries and spider venoms as emerging sources for crop protective peptides.
    Fassolo EM; Guo S; Wang Y; Rosa S; Herzig V
    J Pept Sci; 2024 Apr; ():e3600. PubMed ID: 38623834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria.
    Camó C; Torné M; Besalú E; Rosés C; Cirac AD; Moiset G; Badosa E; Bardají E; Montesinos E; Planas M; Feliu L
    Molecules; 2017 Oct; 22(11):. PubMed ID: 29072606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating turn residues on de novo designed β-hairpin peptides for selectivity against drug-resistant bacteria.
    Tram NDT; Selvarajan V; Boags A; Mukherjee D; Marzinek JK; Cheng B; Jiang ZC; Goh P; Koh JJ; Teo JWP; Bond PJ; Ee PLR
    Acta Biomater; 2021 Nov; 135():214-224. PubMed ID: 34506975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach.
    Monroc S; Badosa E; Besalú E; Planas M; Bardají E; Montesinos E; Feliu L
    Peptides; 2006 Nov; 27(11):2575-84. PubMed ID: 16762457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control.
    Montesinos E; Bardají E
    Chem Biodivers; 2008 Jul; 5(7):1225-37. PubMed ID: 18649311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.