These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 36144482)
1. Kinetic Study of the Maillard Reaction in Thin Film Generated by Microdroplets Deposition. Salvitti C; de Petris G; Troiani A; Managò M; Ricci A; Pepi F Molecules; 2022 Sep; 27(18):. PubMed ID: 36144482 [TBL] [Abstract][Full Text] [Related]
2. Effect of glycine on reaction of cysteine-xylose: Insights on initial Maillard stage intermediates to develop meat flavor. Cao C; Xie J; Hou L; Zhao J; Chen F; Xiao Q; Zhao M; Fan M Food Res Int; 2017 Sep; 99(Pt 1):444-453. PubMed ID: 28784504 [TBL] [Abstract][Full Text] [Related]
3. Aqueous Preparation of Maillard Reaction Intermediate from Glutathione and Xylose and its Volatile Formation During Thermal Treatment. Sun F; Cui H; Zhan H; Xu M; Hayat K; Tahir MU; Hussain S; Zhang X; Ho CT J Food Sci; 2019 Dec; 84(12):3584-3593. PubMed ID: 31721210 [TBL] [Abstract][Full Text] [Related]
4. Maillard Browning Inhibition by Ellagic Acid via Its Adduct Formation with the Amadori Rearrangement Product. Cui H; Wang Z; Ma M; Hayat K; Zhang Q; Xu Y; Zhang X; Ho CT J Agric Food Chem; 2021 Sep; 69(34):9924-9933. PubMed ID: 34427083 [TBL] [Abstract][Full Text] [Related]
5. Meat flavor generation from different composition patterns of initial Maillard stage intermediates formed in heated cysteine-xylose-glycine reaction systems. Zhao J; Wang T; Xie J; Xiao Q; Du W; Wang Y; Cheng J; Wang S Food Chem; 2019 Feb; 274():79-88. PubMed ID: 30373010 [TBL] [Abstract][Full Text] [Related]
6. Relative quantification of N(epsilon)-(Carboxymethyl)lysine, imidazolone A, and the Amadori product in glycated lysozyme by MALDI-TOF mass spectrometry. Kislinger T; Humeny A; Peich CC; Zhang X; Niwa T; Pischetsrieder M; Becker CM J Agric Food Chem; 2003 Jan; 51(1):51-7. PubMed ID: 12502384 [TBL] [Abstract][Full Text] [Related]
7. Kinetic study of high-intensity ultrasound-assisted Maillard reaction in a model system of d-glucose and glycine. Yu H; Seow YX; Ong PKC; Zhou W Food Chem; 2018 Dec; 269():628-637. PubMed ID: 30100481 [TBL] [Abstract][Full Text] [Related]
8. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems. Hou L; Xie J; Zhao J; Zhao M; Fan M; Xiao Q; Liang J; Chen F Food Chem; 2017 Oct; 232():135-144. PubMed ID: 28490056 [TBL] [Abstract][Full Text] [Related]
9. Optimised formation of blue Maillard reaction products of xylose and glycine model systems and associated antioxidant activity. Yin Z; Sun Q; Zhang X; Jing H J Sci Food Agric; 2014 May; 94(7):1332-9. PubMed ID: 24173610 [TBL] [Abstract][Full Text] [Related]
10. Insight into Isomeric Diversity of Glycated Amino Acids in Maillard Reaction Mixtures. Xing H; Yaylayan V Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408824 [TBL] [Abstract][Full Text] [Related]
11. Effects of high-intensity ultrasound on Maillard reaction in a model system of d-xylose and l-lysine. Yu H; Seow YX; Ong PK; Zhou W Ultrason Sonochem; 2017 Jan; 34():154-163. PubMed ID: 27773231 [TBL] [Abstract][Full Text] [Related]
12. Molecular shape analysis of a Maillard reaction intermediate. Jokic A; Zimpel Z; Huang PM; Mezey PG SAR QSAR Environ Res; 2001; 12(3):297-307. PubMed ID: 11696926 [TBL] [Abstract][Full Text] [Related]
13. Evolution of Complex Maillard Chemical Reactions, Resolved in Time. Hemmler D; Roullier-Gall C; Marshall JW; Rychlik M; Taylor AJ; Schmitt-Kopplin P Sci Rep; 2017 Jun; 7(1):3227. PubMed ID: 28607428 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. Glomb MA; Monnier VM J Biol Chem; 1995 Apr; 270(17):10017-26. PubMed ID: 7730303 [TBL] [Abstract][Full Text] [Related]
15. Effective Mechanism of (-)-Epigallocatechin Gallate Indicating the Critical Formation Conditions of Amadori Compound during an Aqueous Maillard Reaction. Yu X; Cui H; Hayat K; Hussain S; Jia C; Zhang SL; Tahir MU; Zhang X; Ho CT J Agric Food Chem; 2019 Mar; 67(12):3412-3422. PubMed ID: 30827106 [TBL] [Abstract][Full Text] [Related]
16. The quantification of free Amadori compounds and amino acids allows to model the bound Maillard reaction products formation in soybean products. Troise AD; Wiltafsky M; Fogliano V; Vitaglione P Food Chem; 2018 May; 247():29-38. PubMed ID: 29277225 [TBL] [Abstract][Full Text] [Related]
17. Sulfuric Acid Catalyzed Esterification of Amino Acids in Thin Film. Salvitti C; de Petris G; Troiani A; Managò M; Di Noi A; Ricci A; Pepi F J Am Soc Mass Spectrom; 2023 Dec; 34(12):2748-2754. PubMed ID: 37904271 [TBL] [Abstract][Full Text] [Related]
18. Origin and yields of acetic acid in pentose-based Maillard reaction systems. Davidek T; Gouézec E; Devaud S; Blank I Ann N Y Acad Sci; 2008 Apr; 1126():241-3. PubMed ID: 18448822 [TBL] [Abstract][Full Text] [Related]
19. Mechanochemical generation of N,N-diglycated glycine and MS/MS characterization of its isomeric composition. Xing H; Mossine VV; Yaylayan V Food Chem; 2022 Dec; 397():133757. PubMed ID: 35917779 [TBL] [Abstract][Full Text] [Related]
20. Tang W; Cui H; Sun F; Yu X; Hayat K; Hussain S; Tahir MU; Zhang X; Ho CT J Agric Food Chem; 2019 Aug; 67(32):8994-9001. PubMed ID: 31347366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]