These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36144561)

  • 61. Zr
    Banu HT; Karthikeyan P; Meenakshi S
    Int J Biol Macromol; 2019 Jun; 130():573-583. PubMed ID: 30797805
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils.
    Onireti OO; Lin C; Qin J
    Chemosphere; 2017 Mar; 170():161-168. PubMed ID: 27988451
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of Fe(III)-fulvic acid on Cu removal via adsorption versus coprecipitation.
    Yang R; Li Z; Huang B; Luo N; Huang M; Wen J; Zhang Q; Zhai X; Zeng G
    Chemosphere; 2018 Apr; 197():291-298. PubMed ID: 29353679
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Comparative Adsorptive Removal of Phosphate and Nitrate from Wastewater Using Biochar-MgAl LDH Nanocomposites: Coexisting Anions Effect and Mechanistic Studies.
    Alagha O; Manzar MS; Zubair M; Anil I; Mu'azu ND; Qureshi A
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32079126
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth.
    Cai R; Wang X; Ji X; Peng B; Tan C; Huang X
    J Environ Manage; 2017 Feb; 187():212-219. PubMed ID: 27912132
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Adsorption of nitrate onto biochar derived from agricultural residuals.
    Zhao H; Xue Y; Long L; Hu X
    Water Sci Technol; 2018 Jan; 77(1-2):548-554. PubMed ID: 29377839
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Macroscopic and molecular investigations of copper sorption by a steam-activated biochar.
    Ippolito JA; Strawn DG; Scheckel KG; Novak JM; Ahmedna M; Niandou MA
    J Environ Qual; 2012; 41(4):1150-6. PubMed ID: 22751057
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Temperature-dependent magnesium citrate modified formation of MgO nanoparticles biochar composites with efficient phosphate removal.
    Zhu D; Yang H; Chen X; Chen W; Cai N; Chen Y; Zhang S; Chen H
    Chemosphere; 2021 Jul; 274():129904. PubMed ID: 33979927
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Study of arsenic adsorption in calcareous soils: Competitive effect of phosphate, citrate, oxalate, humic acid and fulvic acid.
    Marzi M; Towfighi H; Shahbazi K; Farahbakhsh M; Kazemian H
    J Environ Manage; 2022 Sep; 318():115532. PubMed ID: 35717699
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of low-molecular-weight organic acids on kinetics release and fractionation of phosphorus in some calcareous soils of western Iran.
    Taghipour M; Jalali M
    Environ Monit Assess; 2013 Jul; 185(7):5471-82. PubMed ID: 23142876
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Adsorption of phosphate from aqueous solution by vegetable biochar/layered double oxides: Fast removal and mechanistic studies.
    Zhang Z; Yan L; Yu H; Yan T; Li X
    Bioresour Technol; 2019 Jul; 284():65-71. PubMed ID: 30925424
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Computational study of phosphate adsorption on Mg/Ca modified biochar structure in aqueous solution.
    Yin Q; Liu M; Li Y; Li H; Wen Z
    Chemosphere; 2021 Apr; 269():129374. PubMed ID: 33385666
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of low-molecular-weight organic ligands and phosphate on adsorption of Pseudomonas putida by clay minerals and iron oxide.
    Wu H; Jiang D; Cai P; Rong X; Huang Q
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):147-51. PubMed ID: 20843669
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Aging Induced Changes in Biochar's Functionality and Adsorption Behavior for Phosphate and Ammonium.
    Mia S; Dijkstra FA; Singh B
    Environ Sci Technol; 2017 Aug; 51(15):8359-8367. PubMed ID: 28632984
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biochar composites with nano zerovalent iron and eggshell powder for nitrate removal from aqueous solution with coexisting chloride ions.
    Ahmad M; Ahmad M; Usman ARA; Al-Faraj AS; Abduljabbar AS; Al-Wabel MI
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25757-25771. PubMed ID: 28921403
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Oxalate-enhanced solubility of lead (Pb) in the presence of phosphate: pH control on mineral precipitation.
    McBride MB; Kelch SE; Schmidt MP; Sherpa S; Martinez CE; Aristilde L
    Environ Sci Process Impacts; 2019 Apr; 21(4):738-747. PubMed ID: 30895974
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A novel quaternized chitosan-melamine-glutaraldehyde resin for the removal of nitrate and phosphate anions.
    Sowmya A; Meenakshi S
    Int J Biol Macromol; 2014 Mar; 64():224-32. PubMed ID: 24321490
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution.
    Khan ZH; Gao M; Qiu W; Islam MS; Song Z
    Chemosphere; 2020 May; 246():125701. PubMed ID: 31891847
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Aging impacts of low molecular weight organic acids (LMWOAs) on furfural production residue-derived biochars: Porosity, functional properties, and inorganic minerals.
    Liu G; Chen L; Jiang Z; Zheng H; Dai Y; Luo X; Wang Z
    Sci Total Environ; 2017 Dec; 607-608():1428-1436. PubMed ID: 28746993
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of low molecular weight organic acids on phosphorus adsorption by ferric-alum water treatment residuals.
    Wang C; Wang Z; Lin L; Tian B; Pei Y
    J Hazard Mater; 2012 Feb; 203-204():145-50. PubMed ID: 22192585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.