These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36144692)

  • 1. Multilayer Graphtriyne Membranes for Separation and Storage of CO
    Apriliyanto YB; Faginas-Lago N; Evangelisti S; Bartolomei M; Leininger T; Pirani F; Pacifici L; Lombardi A
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of post-combustion carbon dioxide capture technologies using activated carbon.
    Mukherjee A; Okolie JA; Abdelrasoul A; Niu C; Dalai AK
    J Environ Sci (China); 2019 Sep; 83():46-63. PubMed ID: 31221387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions.
    Songolzadeh M; Soleimani M; Takht Ravanchi M; Songolzadeh R
    ScientificWorldJournal; 2014; 2014():828131. PubMed ID: 24696663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide separation with a two-dimensional polymer membrane.
    Schrier J
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3745-52. PubMed ID: 22734516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Dioxide Capture by Adsorption in a Model Hydroxy-Modified Graphene Pore.
    Freyre P; St Pierre E; Rybolt T
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key Applications and Potential Limitations of Ionic Liquid Membranes in the Gas Separation Process of CO
    Elhenawy S; Khraisheh M; AlMomani F; Hassan M
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-Based Technologies for Post-Combustion CO
    Gkotsis P; Peleka E; Zouboulis A
    Membranes (Basel); 2023 Dec; 13(12):. PubMed ID: 38132902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional diamine-linked covalent organic frameworks for CO
    Apriliyanto YB; Darmawan N; Faginas-Lago N; Lombardi A
    Phys Chem Chem Phys; 2020 Nov; 22(44):25918-25929. PubMed ID: 33164014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics investigation of separation of hydrogen sulfide from acidic gas mixtures inside metal-doped graphite micropores.
    Huang PH
    Phys Chem Chem Phys; 2015 Sep; 17(35):22686-98. PubMed ID: 26256825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the Separation of H
    Bayati B; Ghorbani A; Ghasemzadeh K; Iulianelli A; Basile A
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31795204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular simulation study of the competitive adsorption of H2O and CO2 in zeolite 13X.
    Joos L; Swisher JA; Smit B
    Langmuir; 2013 Dec; 29(51):15936-42. PubMed ID: 24313865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational study of the effect of functionalization on natural gas components separation and adsorption in NUM-3a MOF.
    Khalili AA; Yeganegi S
    J Mol Graph Model; 2020 Dec; 101():107731. PubMed ID: 32931982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lignocellulose-based adsorbents: A spotlight review of the effective parameters on carbon dioxide capture process.
    Rouzitalab Z; Maklavany DM; Jafarinejad S; Rashidi A
    Chemosphere; 2020 May; 246():125756. PubMed ID: 31918088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption-induced clustering of CO
    Meconi GM; Zangi R
    Phys Chem Chem Phys; 2020 Sep; 22(37):21031-21041. PubMed ID: 32926038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusually Low Heat of Adsorption of CO
    Pérez-Botella E; Martínez-Franco R; González-Camuñas N; Cantín Á; Palomino M; Moliner M; Valencia S; Rey F
    Front Chem; 2020; 8():588712. PubMed ID: 33195090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step conversion of agro-wastes to nanoporous carbons: Role in separation of greenhouse gases.
    Saha D; Taylor B; Alexander N; Joyce DF; Faux GI; Lin Y; Shteyn V; Orkoulas G
    Bioresour Technol; 2018 May; 256():232-240. PubMed ID: 29453049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-combustion CO
    Akeeb O; Wang L; Xie W; Davis R; Alkasrawi M; Toan S
    J Environ Manage; 2022 Jul; 313():115026. PubMed ID: 35405546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.
    Wang J; Krishna R; Yang J; Deng S
    Environ Sci Technol; 2015 Aug; 49(15):9364-73. PubMed ID: 26114815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the adsorptive selectivity of carbon nanotubes for effective separation of CO₂/N₂ mixtures.
    Razavi SS; Hashemianzadeh SM; Karimi H
    J Mol Model; 2011 May; 17(5):1163-72. PubMed ID: 20694736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomass-Derived Carbon Molecular Sieves Applied to an Enhanced Carbon Capture and Storage Process (e-CCS) for Flue Gas Streams in Shallow Reservoirs.
    Rodriguez Acevedo E; Franco CA; Carrasco-Marín F; Pérez-Cadenas AF; Cortés FB
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32443703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.