BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36144906)

  • 1. Number Concentration Measurements of Polystyrene Submicrometer Particles.
    DeRose PC; Benkstein KD; Elsheikh EB; Gaigalas AK; Lehman SE; Ripple DC; Tian L; Vreeland WN; Welch EJ; York AW; Zhang YZ; Wang L
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining Number Concentrations and Diameters of Polystyrene Particles by Measuring the Effective Refractive Index of Colloids Using Surface Plasmon Resonance.
    Tuoriniemi J; Moreira B; Safina G
    Langmuir; 2016 Oct; 32(41):10632-10640. PubMed ID: 27661193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Traceable characterization of hollow organosilica beads as potential reference materials for extracellular vesicle measurements with optical techniques.
    Deumer J; Schürmann R; Gaál A; Varga Z; Bettin B; van der Pol E; Nieuwland R; Ojeda D; Sikora A; Bartczak D; Goenaga-Infante H; Noireaux J; Khakpour M; Korpelainen V; Gollwitzer C
    Discov Nano; 2024 Jan; 19(1):14. PubMed ID: 38252361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis.
    Mulholland GW; Donnelly MK; Hagwood CR; Kukuck SR; Hackley VA; Pui DY
    J Res Natl Inst Stand Technol; 2006; 111(4):257-312. PubMed ID: 27274934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of transmission electron and atomic force microscopy techniques to determine volume equivalent diameter of submicrometer particles.
    Tumolva L; Park JY; Park K
    Microsc Res Tech; 2012 Apr; 75(4):505-12. PubMed ID: 21919129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols.
    Mills JB; Park JH; Peters TM
    J Occup Environ Hyg; 2013; 10(5):250-8. PubMed ID: 23473056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlaboratory comparison of nanoparticle size measurements between NMIJ and NIST using two different types of dynamic light scattering instruments.
    Takahashi K; Kramar JA; Farkas N; Takahata K; Misumi I; Sugawara K; Gonda S; Ehara K
    Metrologia; 2019; 56(5):. PubMed ID: 32116391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gentle Sampling of Submicrometer Airborne Virus Particles using a Personal Electrostatic Particle Concentrator.
    Hong S; Bhardwaj J; Han CH; Jang J
    Environ Sci Technol; 2016 Nov; 50(22):12365-12372. PubMed ID: 27786464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical Considerations for Detection and Characterization of Sub-Micron Particles in Protein Solutions by Nanoparticle Tracking Analysis.
    Gruia F; Parupudi A; Polozova A
    PDA J Pharm Sci Technol; 2015; 69(3):427-39. PubMed ID: 26048748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding NIST Calibration of Fluorescent Microspheres for Flow Cytometry to More Fluorescence Channels and Smaller Particles.
    DeRose P; Tian L; Elsheikh E; Urbas A; Zhang YZ; Wang L
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32947933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishing CD19 B-cell reference control materials for comparable and quantitative cytometric expression analysis.
    Wang L; Bhardwaj R; Mostowski H; Patrone PN; Kearsley AJ; Watson J; Lim L; Pichaandi J; Ornatsky O; Majonis D; Bauer SR; Degheidy HA
    PLoS One; 2021; 16(3):e0248118. PubMed ID: 33740004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of unmodified polystyrene nanosphere standards by capillary zone electrophoresis.
    Vanifatova NG; Spivakov BY; Mattusch J; Wennrich R
    J Chromatogr A; 2000 Nov; 898(2):257-63. PubMed ID: 11117423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reference material development for calibration and verification of image-based particle analyzers.
    Sharma DK; King D; Merchant C
    Int J Pharm; 2011 Sep; 416(1):293-5. PubMed ID: 21726613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary Determination of Particle Number Concentration with Light Obscuration and Dynamic Imaging Particle Counters.
    Ripple DC; DeRose PC
    J Res Natl Inst Stand Technol; 2018; 123():1-21. PubMed ID: 34877136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NIST/ISAC standardization study: variability in assignment of intensity values to fluorescence standard beads and in cross calibration of standard beads to hard dyed beads.
    Hoffman RA; Wang L; Bigos M; Nolan JP
    Cytometry A; 2012 Sep; 81(9):785-96. PubMed ID: 22915363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.