These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36144977)

  • 1. Novel Nanoarchitectured Cu
    Lee DJ; Mohan Kumar G; Ganesh V; Jeon HC; Kim DY; Kang TW; Ilanchezhiyan P
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoelectrochemical Enhancement of Cu
    Chang TK; Huang YS; Chen HY; Liao CN
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48540-48546. PubMed ID: 36206483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient all p-type heterojunction photocathodes for photoelectrochemical water splitting.
    Lu X; Liu Z
    Dalton Trans; 2017 Jun; 46(22):7351-7360. PubMed ID: 28548180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrochemical Water Splitting with p-Type Metal Oxide Semiconductor Photocathodes.
    Jang YJ; Lee JS
    ChemSusChem; 2019 May; 12(9):1835-1845. PubMed ID: 30614648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical SnS
    Zhang F; Chen Y; Zhou W; Ren C; Gao H; Tian G
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9093-9101. PubMed ID: 30758936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting.
    Sun B; Shi T; Peng Z; Sheng W; Jiang T; Liao G
    Nanoscale Res Lett; 2013 Nov; 8(1):462. PubMed ID: 24191909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic Photocathode Supported by Copper Nanosheets Array for Overall Water Splitting.
    Zhang R; Sun X; Zheng L; Diao L; Chen F; Li Y; Wang S; Wang Y; Wang W; Lu F; Dong H; Liu H; Cheng Y
    Chemistry; 2022 Jan; 28(6):e202103495. PubMed ID: 34859914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and Compositional Investigations on the Stability of Cuprous Oxide Nanowire Photocathodes for Photoelectrochemical Water Splitting.
    Son MK; Pan L; Mayer MT; Hagfeldt A; Grätzel M; Luo J
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55080-55091. PubMed ID: 34761678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP
    Chen F; Zhu Q; Wang Y; Cui W; Su X; Li Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31025-31031. PubMed ID: 27768279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Engineering of Cu
    Heo J; Bae H; Mane P; Burungale V; Seong C; Ha JS
    ACS Omega; 2023 Sep; 8(36):32794-32803. PubMed ID: 37720750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayered Hematite Nanowires with Thin-Film Silicon Photovoltaics in an All-Earth-Abundant Hybrid Tandem Device for Solar Water Splitting.
    Urbain F; Tang P; Smirnov V; Welter K; Andreu T; Finger F; Arbiol J; Morante JR
    ChemSusChem; 2019 Apr; 12(7):1428-1436. PubMed ID: 30633450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Cost, Efficient, and Durable H
    Muzzillo CP; Klein WE; Li Z; DeAngelis AD; Horsley K; Zhu K; Gaillard N
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19573-19579. PubMed ID: 29767955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating Semiconducting Catalyst of ReS
    Zhao H; Dai Z; Xu X; Pan J; Hu J
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23074-23080. PubMed ID: 29932637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of morphology on the photoelectrochemical performance of nanostructured Cu
    Shoute LCT; Alam KM; Vahidzadeh E; Manuel AP; Zeng S; Kumar P; Kar P; Shankar K
    Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 32619996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays.
    Kornienko N; Gibson NA; Zhang H; Eaton SW; Yu Y; Aloni S; Leone SR; Yang P
    ACS Nano; 2016 May; 10(5):5525-35. PubMed ID: 27124203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin MoS
    Zhou Q; Su S; Hu D; Lin L; Yan Z; Gao X; Zhang Z; Liu JM
    Nanotechnology; 2018 Mar; 29(10):105402. PubMed ID: 29381478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key Strategies on Cu
    Son MK
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. InGaAsP as a Promising Narrow Band Gap Semiconductor for Photoelectrochemical Water Splitting.
    Butson JD; Narangari PR; Lysevych M; Wong-Leung J; Wan Y; Karuturi SK; Tan HH; Jagadish C
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25236-25242. PubMed ID: 31265227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of crystalline sputtered LaFeO
    Son MK; Seo H; Watanabe M; Shiratani M; Ishihara T
    Nanoscale; 2020 May; 12(17):9653-9660. PubMed ID: 32319489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Synthesis of Molybdenum Phosphide Nanorods on Silicon Using Graphene at the Heterointerface for Efficient Photoelectrochemical Water Reduction.
    Jun SE; Choi S; Choi S; Lee TH; Kim C; Yang JW; Choe WO; Im IH; Kim CJ; Jang HW
    Nanomicro Lett; 2021 Mar; 13(1):81. PubMed ID: 34138338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.