These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 36145)
1. Characterization of glutamate transport system in hydrophobic protein (H protein) of Bacillus subtilis. Kusaka I; Kanai K Biochim Biophys Acta; 1979 Apr; 552(3):492-8. PubMed ID: 36145 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of glutamate transport in Escherichia coli B. 2. Kinetics of glutamate transport driven by artificially imposed proton and sodium ion gradients across the cytoplasmic membrane. Fujimura T; Yamato I; Anraku Y Biochemistry; 1983 Apr; 22(8):1959-65. PubMed ID: 6133551 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of glutamate transport in Escherichia coli B. 1. Proton-dependent and sodium ion dependent binding of glutamate to a glutamate carrier in the cytoplasmic membrane. Fujimura T; Yamato I; Anraku Y Biochemistry; 1983 Apr; 22(8):1954-9. PubMed ID: 6133550 [TBL] [Abstract][Full Text] [Related]
4. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus. Heyne RI; de Vrij W; Crielaard W; Konings WN J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936 [TBL] [Abstract][Full Text] [Related]
5. Sodium-dependent glutamate uptake by an alkaliphilic, thermophilic Bacillus strain, TA2.A1. Peddie CJ; Cook GM; Morgan HW J Bacteriol; 1999 May; 181(10):3172-7. PubMed ID: 10322019 [TBL] [Abstract][Full Text] [Related]
6. Kinetic properties of electrogenic Na+/H+ antiport in membrane vesicles from an alkalophilic Bacillus sp. Kitada M; Horikoshi K J Bacteriol; 1992 Sep; 174(18):5936-40. PubMed ID: 1325968 [TBL] [Abstract][Full Text] [Related]
7. Active transport of L-glutamate by membrane vesicles isolated from rat brain. Kanner BI; Sharon I Biochemistry; 1978 Sep; 17(19):3949-53. PubMed ID: 708689 [TBL] [Abstract][Full Text] [Related]
8. Sodium-proton exchange in human ileal brush-border membrane vesicles. Ramaswamy K; Harig JM; Kleinman JG; Harris MS; Barry JA Biochim Biophys Acta; 1989 Jun; 981(2):193-9. PubMed ID: 2543457 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of hydrophobic proteins (H proteins) in the membrane fraction of Bacillus subtilis. Involvement in membrane biosynthesis and the formation of biochemically active membrane vesicles by combining H proteins with lipid. Kusaka I; Hayakawa K; Kanai K; Fukui S Eur J Biochem; 1976 Dec; 71(2):451-8. PubMed ID: 188652 [TBL] [Abstract][Full Text] [Related]
10. Molecular cloning of gltS and gltP, which encode glutamate carriers of Escherichia coli B. Deguchi Y; Yamato I; Anraku Y J Bacteriol; 1989 Mar; 171(3):1314-9. PubMed ID: 2537813 [TBL] [Abstract][Full Text] [Related]
11. Na+ and H+ transport in human jejunal brush-border membrane vesicles. Kleinman JG; Harig JM; Barry JA; Ramaswamy K Am J Physiol; 1988 Aug; 255(2 Pt 1):G206-11. PubMed ID: 2841867 [TBL] [Abstract][Full Text] [Related]
12. [Studies on the mechanism of placental transport of L-glutamate (the effect of K+ in microvillous vesicles on L-glutamate uptake)]. Iioka H; Moriyama I; Itoh K; Hino K; Ichijo M Nihon Sanka Fujinka Gakkai Zasshi; 1985 Oct; 37(10):2005-9. PubMed ID: 4078404 [TBL] [Abstract][Full Text] [Related]
13. Purification and characterization of Ca2+/H+ antiporter from Bacillus subtilis. Matsushita T; Ueda T; Kusaka I Eur J Biochem; 1986 Apr; 156(1):95-100. PubMed ID: 3082635 [TBL] [Abstract][Full Text] [Related]
14. A novel glutamate transport system in poly(γ-glutamic acid)-producing strain Bacillus subtilis CGMCC 0833. Wu Q; Xu H; Zhang D; Ouyang P Appl Biochem Biotechnol; 2011 Aug; 164(8):1431-43. PubMed ID: 21437781 [TBL] [Abstract][Full Text] [Related]
15. Na-dependent L-glutamate transport by eel intestinal BBMV: role of K+ and Cl-. Romano PM; Ahearn GA; Storelli C Am J Physiol; 1989 Jul; 257(1 Pt 2):R180-8. PubMed ID: 2568760 [TBL] [Abstract][Full Text] [Related]
16. Transport characteristics of L-glutamate in human jejunal brush-border membrane vesicles. Harig JM; Rajendran VM; Barry JA; Ramaswamy K Biochim Biophys Acta; 1987 Oct; 903(2):358-64. PubMed ID: 2888487 [TBL] [Abstract][Full Text] [Related]
17. Stimulation of the efflux of L-glutamate from renal brush-border membrane vesicles by extravesicular potassium. Sacktor B; Lepor N; Schneider EG Biosci Rep; 1981 Sep; 1(9):709-13. PubMed ID: 6125220 [TBL] [Abstract][Full Text] [Related]
18. The role of potassium and chloride ions on the Na+/acidic amino acid cotransport system in rat intestinal brush-border membrane vesicles. Corcelli A; Storelli C Biochim Biophys Acta; 1983 Jul; 732(1):24-31. PubMed ID: 6135444 [TBL] [Abstract][Full Text] [Related]
19. Relationship between the Na+/H+ antiporter and Na+/substrate symport in Bacillus alcalophilus. Guffanti AA; Cohn DE; Kaback HR; Krulwich TA Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1481-4. PubMed ID: 6262805 [TBL] [Abstract][Full Text] [Related]
20. Electrogenicity of sodium/L-glutamate cotransport in rabbit renal brush-border membranes: a reevaluation. Heinz E; Sommerfeld DL; Kinne RK Biochim Biophys Acta; 1988 Jan; 937(2):300-8. PubMed ID: 2892532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]