BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 36145066)

  • 1. Megalin and Vitamin D Metabolism-Implications in Non-Renal Tissues and Kidney Disease.
    Khan SS; Petkovich M; Holden RM; Adams MA
    Nutrients; 2022 Sep; 14(18):. PubMed ID: 36145066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reevaluating the role of megalin in renal vitamin D homeostasis using a human cell-derived microphysiological system.
    Chapron BD; Chapron A; Phillips B; Okoli MC; Shen DD; Kelly EJ; Himmelfarb J; Thummel KE
    ALTEX; 2018; 35(4):504-515. PubMed ID: 29999169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proximal tubule endocytic apparatus as the specific renal uptake mechanism for vitamin D-binding protein/25-(OH)D3 complex.
    Negri AL
    Nephrology (Carlton); 2006 Dec; 11(6):510-5. PubMed ID: 17199789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Megalin mediates 25-hydroxyvitamin D
    Gao Y; Zhou S; Luu S; Glowacki J
    FASEB J; 2019 Jun; 33(6):7684-7693. PubMed ID: 30893561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Megalin-mediated endocytosis of vitamin D binding protein correlates with 25-hydroxycholecalciferol actions in human mammary cells.
    Rowling MJ; Kemmis CM; Taffany DA; Welsh J
    J Nutr; 2006 Nov; 136(11):2754-9. PubMed ID: 17056796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective biological response by target organs (intestine, kidney, and bone) to 1,25-dihydroxyvitamin D3 and two analogues.
    Norman AW; Sergeev IN; Bishop JE; Okamura WH
    Cancer Res; 1993 Sep; 53(17):3935-42. PubMed ID: 8395333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect.
    Leheste JR; Melsen F; Wellner M; Jansen P; Schlichting U; Renner-Müller I; Andreassen TT; Wolf E; Bachmann S; Nykjaer A; Willnow TE
    FASEB J; 2003 Feb; 17(2):247-9. PubMed ID: 12475886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significance of urinary C-megalin excretion in vitamin D metabolism in pre-dialysis CKD patients.
    Toi N; Inaba M; Ishimura E; Tsugawa N; Imanishi Y; Emoto M; Hirayama Y; Nakatani S; Saito A; Yamada S
    Sci Rep; 2019 Feb; 9(1):2207. PubMed ID: 30778159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression of vitamin D hydroxylase and megalin in the remnant kidney of nephrectomized rats.
    Takemoto F; Shinki T; Yokoyama K; Inokami T; Hara S; Yamada A; Kurokawa K; Uchida S
    Kidney Int; 2003 Aug; 64(2):414-20. PubMed ID: 12846736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression profiling confirms the role of endocytic receptor megalin in renal vitamin D3 metabolism.
    Hilpert J; Wogensen L; Thykjaer T; Wellner M; Schlichting U; Orntoft TF; Bachmann S; Nykjaer A; Willnow TE
    Kidney Int; 2002 Nov; 62(5):1672-81. PubMed ID: 12371967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of vitamin D: current status.
    DeLuca HF
    Am J Clin Nutr; 1976 Nov; 29(11):1258-70. PubMed ID: 187053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A High-Calcium and Phosphate Rescue Diet and VDR-Expressing Transgenes Normalize Serum Vitamin D Metabolite Profiles and Renal Cyp27b1 and Cyp24a1 Expression in VDR Null Mice.
    Kaufmann M; Lee SM; Pike JW; Jones G
    Endocrinology; 2015 Dec; 156(12):4388-97. PubMed ID: 26441239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of vitamin D metabolizing enzymes in murine renal and extrarenal tissues by dietary phosphate, FGF23, and 1,25(OH)2D3.
    Kägi L; Bettoni C; Pastor-Arroyo EM; Schnitzbauer U; Hernando N; Wagner CA
    PLoS One; 2018; 13(5):e0195427. PubMed ID: 29771914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in a transformed human proximal tubule cell line: evidence for direct regulation of vitamin D metabolism by calcium.
    Bland R; Walker EA; Hughes SV; Stewart PM; Hewison M
    Endocrinology; 1999 May; 140(5):2027-34. PubMed ID: 10218951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice.
    Chow EC; Quach HP; Vieth R; Pang KS
    Am J Physiol Endocrinol Metab; 2013 May; 304(9):E977-89. PubMed ID: 23482451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin D: recent advances.
    DeLuca HF; Schnoes HK
    Annu Rev Biochem; 1983; 52():411-39. PubMed ID: 6311080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitamin D transport proteins megalin and disabled-2 are expressed in prostate and colon epithelial cells and are induced and activated by all-trans-retinoic acid.
    Ternes SB; Rowling MJ
    Nutr Cancer; 2013; 65(6):900-7. PubMed ID: 23909735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal Endocytic Regulation of Vitamin D Metabolism during Maturation and Aging in Laying Hens.
    Kuwata N; Mukohda H; Uchida H; Takamatsu R; Binici MM; Yamada T; Sugiyama T
    Animals (Basel); 2024 Feb; 14(3):. PubMed ID: 38338146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in our understanding of the vitamin D endocrine system.
    De Luca HF
    J Lab Clin Med; 1976 Jan; 87(1):7-26. PubMed ID: 173767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The kidney as an endocrine organ involved in the function of vitamin D.
    DeLuca HF
    Am J Med; 1975 Jan; 58(1):39-47. PubMed ID: 163578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.