These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 36145933)
1. Cell-Laden Composite Hydrogel Bioinks with Human Bone Allograft Particles to Enhance Stem Cell Osteogenesis. Gharacheh H; Guvendiren M Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145933 [TBL] [Abstract][Full Text] [Related]
2. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
3. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888 [TBL] [Abstract][Full Text] [Related]
4. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional bioprinting of mesenchymal stem cells using an osteoinductive bioink containing alginate and BMP-2-loaded PLGA nanoparticles for bone tissue engineering. Choe G; Lee M; Oh S; Seok JM; Kim J; Im S; Park SA; Lee JY Biomater Adv; 2022 May; 136():212789. PubMed ID: 35929321 [TBL] [Abstract][Full Text] [Related]
6. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355 [TBL] [Abstract][Full Text] [Related]
7. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
8. An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering. Im S; Choe G; Seok JM; Yeo SJ; Lee JH; Kim WD; Lee JY; Park SA Int J Biol Macromol; 2022 Apr; 205():520-529. PubMed ID: 35217077 [TBL] [Abstract][Full Text] [Related]
9. 3D bioprinting of mouse pre-osteoblasts and human MSCs using bioinks consisting of gelatin and decellularized bone particles. Kara Özenler A; Distler T; Akkineni AR; Tihminlioglu F; Gelinsky M; Boccaccini AR Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38394672 [TBL] [Abstract][Full Text] [Related]
11. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair. Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF Bone; 2022 Jan; 154():116198. PubMed ID: 34534709 [TBL] [Abstract][Full Text] [Related]
12. Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting. Wenz A; Borchers K; Tovar GEM; Kluger PJ Biofabrication; 2017 Nov; 9(4):044103. PubMed ID: 28990579 [TBL] [Abstract][Full Text] [Related]
13. Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration. Kim W; Kim G Biofabrication; 2019 Nov; 12(1):015007. PubMed ID: 31509811 [TBL] [Abstract][Full Text] [Related]
14. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Choe G; Oh S; Seok JM; Park SA; Lee JY Nanoscale; 2019 Dec; 11(48):23275-23285. PubMed ID: 31782460 [TBL] [Abstract][Full Text] [Related]
15. Mechanically tunable photo-cross-linkable bioinks for osteogenic differentiation of MSCs in 3D bioprinted constructs. Kamaraj M; Sreevani G; Prabusankar G; Rath SN Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112478. PubMed ID: 34857263 [TBL] [Abstract][Full Text] [Related]
16. Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue. Chimene D; Miller L; Cross LM; Jaiswal MK; Singh I; Gaharwar AK ACS Appl Mater Interfaces; 2020 Apr; 12(14):15976-15988. PubMed ID: 32091189 [TBL] [Abstract][Full Text] [Related]
17. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
18. 3D Bioprinting of Multifunctional Dynamic Nanocomposite Bioinks Incorporating Cu-Doped Mesoporous Bioactive Glass Nanoparticles for Bone Tissue Engineering. Zhu H; Monavari M; Zheng K; Distler T; Ouyang L; Heid S; Jin Z; He J; Li D; Boccaccini AR Small; 2022 Mar; 18(12):e2104996. PubMed ID: 35102718 [TBL] [Abstract][Full Text] [Related]
19. Bioprinting of Stem Cells in Multimaterial Scaffolds and Their Applications in Bone Tissue Engineering. Tharakan S; Khondkar S; Ilyas A Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833553 [TBL] [Abstract][Full Text] [Related]
20. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. Poldervaart MT; Goversen B; de Ruijter M; Abbadessa A; Melchels FPW; Öner FC; Dhert WJA; Vermonden T; Alblas J PLoS One; 2017; 12(6):e0177628. PubMed ID: 28586346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]