These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 36146081)

  • 1. Research on Lane Changing Game and Behavioral Decision Making Based on Driving Styles and Micro-Interaction Behaviors.
    Ye M; Li P; Yang Z; Liu Y
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Law compliance decision making for autonomous vehicles on highways.
    Ma X; Song L; Zhao C; Wu S; Yu W; Wang W; Yang L; Wang H
    Accid Anal Prev; 2024 Sep; 204():107620. PubMed ID: 38823082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A co-evolutionary lane-changing trajectory planning method for automated vehicles based on the instantaneous risk identification.
    Wu J; Chen X; Bie Y; Zhou W
    Accid Anal Prev; 2023 Feb; 180():106907. PubMed ID: 36455450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-Like Lane Change Decision Model for Autonomous Vehicles that Considers the Risk Perception of Drivers in Mixed Traffic.
    Wang C; Sun Q; Li Z; Zhang H
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Lane-Changing Decision-Making Behavior of Autonomous Vehicles Based on Molecular Dynamics.
    Qu D; Zhang K; Song H; Wang T; Dai S
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Game theoretic model for lane changing: Incorporating conflict risks.
    Arbis D; Dixit VV
    Accid Anal Prev; 2019 Apr; 125():158-164. PubMed ID: 30763813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A proactive crash risk prediction framework for lane-changing behavior incorporating individual driving styles.
    Zhang Y; Chen Y; Gu X; Sze NN; Huang J
    Accid Anal Prev; 2023 Aug; 188():107072. PubMed ID: 37137214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collision-avoidance lane change control method for enhancing safety for connected vehicle platoon in mixed traffic environment.
    Ma Y; Liu Q; Fu J; Liufu K; Li Q
    Accid Anal Prev; 2023 May; 184():106999. PubMed ID: 36780868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Game Theory-Based Approach for Modeling Autonomous Vehicle Behavior in Congested, Urban Lane-Changing Scenarios.
    Smirnov N; Liu Y; Validi A; Morales-Alvarez W; Olaverri-Monreal C
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End-to-End Automated Lane-Change Maneuvering Considering Driving Style Using a Deep Deterministic Policy Gradient Algorithm.
    Hu H; Lu Z; Wang Q; Zheng C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32971987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and Risk Analysis with Lane-Changing Decision Algorithms for Autonomous Vehicles.
    Mechernene A; Judalet V; Chaibet A; Boukhnifer M
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An entropy-based analysis of lane changing behavior: An interactive approach.
    Kosun C; Ozdemir S
    Traffic Inj Prev; 2017 May; 18(4):441-447. PubMed ID: 27603156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vehicle Safety-Assisted Driving Technology Based on Computer Artificial Intelligence Environment.
    Yan H
    Comput Intell Neurosci; 2022; 2022():4390394. PubMed ID: 35761870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Game Algorithm of Intelligent Driving Vehicle Based on Left-Turn Scene of Crossroad Traffic Flow.
    Guo Z; Sun D; Zhou L
    Comput Intell Neurosci; 2022; 2022():9318475. PubMed ID: 36120691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated architecture for intelligence evaluation of automated vehicles.
    Huang H; Zheng X; Yang Y; Liu J; Liu W; Wang J
    Accid Anal Prev; 2020 Sep; 145():105681. PubMed ID: 32712190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns.
    Shangguan Q; Fu T; Wang J; Fang S; Fu L
    Accid Anal Prev; 2022 Jan; 164():106500. PubMed ID: 34823098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive Lane Keeping System for Autonomous Vehicles Using LSTM-RNN Considering Driving Environments.
    Jeong Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-Series-Based Personalized Lane-Changing Decision-Making Model.
    Ye M; Pu L; Li P; Lu X; Liu Y
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Do Autonomous Vehicles Decide?
    Malik S; Khan MA; El-Sayed H; Khan J; Ullah O
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-vehicle interaction safety of connected automated vehicles in merging area: A real-time risk assessment approach.
    Zhu J; Ma Y; Lou Y
    Accid Anal Prev; 2022 Mar; 166():106546. PubMed ID: 34965492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.