These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 36146126)

  • 1. Hierarchical Dynamic Bayesian Network-Based Fatigue Crack Propagation Modeling Considering Initial Defects.
    Xu Y; Zhu B; Zhang Z; Chen J
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic Propagation of Fatigue Cracks in Welded Joints of Steel Bridge Decks under Simulated Traffic Loading.
    Lu N; Liu J; Wang H; Yuan H; Luo Y
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue Crack Propagation Estimation Based on Direct Strain Measurement during a Full-Scale Fatigue Test.
    Reymer P; Leski A; Dziendzikowski M
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty Modeling of Fatigue Crack Growth and Probabilistic Life Prediction for Welded Joints of Nuclear Stainless Steel.
    Chang H; Shen M; Yang X; Hou J
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ANN and LEFM-Based Fatigue Reliability Analysis and Truck Weight Limits of Steel Bridges after Crack Detection.
    Nie L; Wang W; Deng L; He W
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Autonomous Vehicles on Fatigue Life of Orthotropic Steel Decks.
    Zou S; Han D; Wang W; Cao R
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the Fatigue Stress of Orthotropic Steel Decks Based on an Arch Bridge with the Application of the Arlequin Method.
    Cheng C; Xie X; Yu W
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crack propagation analysis and fatigue life assessment of high-strength bolts based on fracture mechanics.
    Zhang P; Li J; Zhao Y; Li J
    Sci Rep; 2023 Sep; 13(1):14567. PubMed ID: 37667025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation and experimental verification of fatigue crack propagation in high-strength bolts based on fracture mechanics.
    Zhang P; Li J; Zhao Y; Li J
    Sci Prog; 2023; 106(4):368504231211660. PubMed ID: 38058131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and Theoretical Study on the Fatigue Crack Propagation in Stud Shear Connectors.
    Kuang Y; Wang Y; Xiang P; Tao L; Wang K; Fan F; Yang J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring Fatigue Damage of Orthotropic Steel Decks Using Nonlinear Ultrasonic Waves.
    Liu J; Zheng F; Shen W; Li D
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue Crack Propagation Prediction of Corroded Steel Plate Strengthened with Carbon Fiber Reinforced Polymer (CFRP) Plates.
    Li A; Wang L; Xu S
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Health Monitoring of Fatigue Cracks for Steel Bridges with Wireless Large-Area Strain Sensors.
    Taher SA; Li J; Jeong JH; Laflamme S; Jo H; Bennett C; Collins WN; Downey ARJ
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Simulation of Fatigue Cracking of Diaphragm Notch in Orthotropic Steel Deck Model.
    Zeng Y; He H; Qu Y; Sun X; Tan H; Zhou J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue Life Prediction of Notched Details Using SWT Model and LEFM-Based Approach.
    Hao R; Wen Z; Xin H; Lin W
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probabilistic Statistics-Based Endurance Life Prediction of Bridge Structures.
    Zhang Y
    Comput Intell Neurosci; 2022; 2022():8035028. PubMed ID: 35755721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law.
    Toribio J; Matos JC; González B
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Behaviour of Bridge Girders with Trapezoidal Profiled Webs Subjected to Moving Loads.
    Wang Z; Shi Y; You X; Jiang R; Gai W
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue Reliability Assessment for Orthotropic Steel Decks Based on Long-Term Strain Monitoring.
    Deng Y; Li A; Feng D
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29320460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation Method of Fatigue Life for Asphalt Pavement on the Steel Bridge Deck Based on the Inhomogeneous Poisson Stochastic Process.
    Xu X; Wan G; Kang F; Li S; Huang W; Li Y; Li Q; Lv C
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.