These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 36146171)
81. Node-Loss Detection Methods for CZ Silicon Single Crystal Based on Multimodal Data Fusion. Jiang L; Xue R; Liu D Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447705 [TBL] [Abstract][Full Text] [Related]
82. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks. Jayalakshmy S; Sudha GF Artif Intell Med; 2020 Mar; 103():101809. PubMed ID: 32143805 [TBL] [Abstract][Full Text] [Related]
83. Three-Class Mammogram Classification Based on Descriptive CNN Features. Jadoon MM; Zhang Q; Haq IU; Butt S; Jadoon A Biomed Res Int; 2017; 2017():3640901. PubMed ID: 28191461 [TBL] [Abstract][Full Text] [Related]
84. Multi-Sensor and Decision-Level Fusion-Based Structural Damage Detection Using a One-Dimensional Convolutional Neural Network. Teng S; Chen G; Liu Z; Cheng L; Sun X Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34201143 [TBL] [Abstract][Full Text] [Related]
85. Wavelet Spectral Deep-training of Convolutional Neural Networks for Accurate Identification of High-Frequency Micro-Scale Spike Transients in the Post-Hypoxic-Ischemic EEG of Preterm Sheep. Abbasi H; Gunn AJ; Bennet L; Unsworth CP Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1011-1014. PubMed ID: 33018156 [TBL] [Abstract][Full Text] [Related]
86. A pixel-wise framework based on convolutional neural network for surface defect detection. Dong G Math Biosci Eng; 2022 Jun; 19(9):8786-8803. PubMed ID: 35942736 [TBL] [Abstract][Full Text] [Related]
87. Rapid identification of ore minerals using multi-scale dilated convolutional attention network associated with portable Raman spectroscopy. Cai Y; Xu D; Shi H Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120607. PubMed ID: 34836810 [TBL] [Abstract][Full Text] [Related]
88. Learning Attention Representation with a Multi-Scale CNN for Gear Fault Diagnosis under Different Working Conditions. Yao Y; Zhang S; Yang S; Gui G Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32102405 [TBL] [Abstract][Full Text] [Related]
89. The weighted multi-scale connections networks for macrodispersivity estimation. Zhou Z; Ji K J Contam Hydrol; 2024 Jul; 265():104394. PubMed ID: 39003944 [TBL] [Abstract][Full Text] [Related]
90. Research on a Method for Classifying Bolt Corrosion Based on an Acoustic Emission Sensor System. Di S; Wu Y; Liu Y Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124093 [TBL] [Abstract][Full Text] [Related]
91. Automatic ECG Classification Using Continuous Wavelet Transform and Convolutional Neural Network. Wang T; Lu C; Sun Y; Yang M; Liu C; Ou C Entropy (Basel); 2021 Jan; 23(1):. PubMed ID: 33477566 [TBL] [Abstract][Full Text] [Related]
93. Period Estimation of Spread Spectrum Codes Based on ResNet. Gu HQ; Liu XX; Xu L; Zhang YJ; Lu ZM Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571785 [TBL] [Abstract][Full Text] [Related]
94. A Bearing Fault Diagnosis Method Based on Wavelet Packet Transform and Convolutional Neural Network Optimized by Simulated Annealing Algorithm. He F; Ye Q Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214312 [TBL] [Abstract][Full Text] [Related]
95. AI-driven deep convolutional neural networks for chest X-ray pathology identification. Albahli S; Ahmad Hassan Yar GN J Xray Sci Technol; 2022; 30(2):365-376. PubMed ID: 35068415 [TBL] [Abstract][Full Text] [Related]
96. Blood Cell Classification Based on Hyperspectral Imaging With Modulated Gabor and CNN. Huang Q; Li W; Zhang B; Li Q; Tao R; Lovell NH IEEE J Biomed Health Inform; 2020 Jan; 24(1):160-170. PubMed ID: 30892256 [TBL] [Abstract][Full Text] [Related]
97. Obstructive sleep apnea prediction from electrocardiogram scalograms and spectrograms using convolutional neural networks. Nasifoglu H; Erogul O Physiol Meas; 2021 Jun; 42(6):. PubMed ID: 34116519 [No Abstract] [Full Text] [Related]
98. ECG quality assessment based on hand-crafted statistics and deep-learned S-transform spectrogram features. Liu G; Han X; Tian L; Zhou W; Liu H Comput Methods Programs Biomed; 2021 Sep; 208():106269. PubMed ID: 34298474 [TBL] [Abstract][Full Text] [Related]
99. Development of convolutional neural networks for recognition of tenogenic differentiation based on cellular morphology. Dursun G; Tandale SB; Gulakala R; Eschweiler J; Tohidnezhad M; Markert B; Stoffel M Comput Methods Programs Biomed; 2021 Sep; 208():106279. PubMed ID: 34343743 [TBL] [Abstract][Full Text] [Related]
100. Identification of paddy blast disease field images using multi-layer CNN models. Yakkundimath R; Saunshi G Environ Monit Assess; 2023 May; 195(6):646. PubMed ID: 37150771 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]