These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36146189)

  • 1. Investigating Methods for Cognitive Workload Estimation for Assistive Robots.
    Aygun A; Nguyen T; Haga Z; Aeron S; Scheutz M
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning.
    Ding Y; Cao Y; Duffy VG; Wang Y; Zhang X
    Ergonomics; 2020 Jul; 63(7):896-908. PubMed ID: 32330080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of cognitive conflict during unexpected robot behavior under different mental workload conditions in a physical human-robot collaboration.
    John AR; Singh AK; Gramann K; Liu D; Lin CT
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38295415
    [No Abstract]   [Full Text] [Related]  

  • 4. Eye-Tracking in Physical Human-Robot Interaction: Mental Workload and Performance Prediction.
    Upasani S; Srinivasan D; Zhu Q; Du J; Leonessa A
    Hum Factors; 2024 Aug; 66(8):2104-2119. PubMed ID: 37793896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing workload in using electromyography (EMG)-based prostheses.
    Park J; Berman J; Dodson A; Liu Y; Armstrong M; Huang H; Kaber D; Ruiz J; Zahabi M
    Ergonomics; 2024 Feb; 67(2):257-273. PubMed ID: 37264794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. COLET: A dataset for COgnitive workLoad estimation based on eye-tracking.
    Ktistakis E; Skaramagkas V; Manousos D; Tachos NS; Tripoliti E; Fotiadis DI; Tsiknakis M
    Comput Methods Programs Biomed; 2022 Sep; 224():106989. PubMed ID: 35870415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal Assessment of Cognitive Workload Using Neural, Subjective and Behavioural Measures in Smart Factory Settings.
    Zakeri Z; Arif A; Omurtag A; Breedon P; Khalid A
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-based analysis of operator pupillary response to assess cognitive workload in clinical ultrasound imaging.
    Sharma H; Drukker L; Papageorghiou AT; Noble JA
    Comput Biol Med; 2021 Aug; 135():104589. PubMed ID: 34198044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature Weight Driven Interactive Mutual Information Modeling for Heterogeneous Bio-Signal Fusion to Estimate Mental Workload.
    Zhang P; Wang X; Chen J; You W
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29023364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-task cognitive workload recognition using a dynamic residual network with attention mechanism based on neurophysiological signals.
    Ji Z; Tang J; Wang Q; Xie X; Liu J; Yin Z
    Comput Methods Programs Biomed; 2023 Mar; 230():107352. PubMed ID: 36682107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning-based classification of valence emotion from electroencephalography.
    Ramzan M; Dawn S
    Int J Neurosci; 2019 Nov; 129(11):1085-1093. PubMed ID: 31215829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal Fusion for Objective Assessment of Cognitive Workload: A Review.
    Debie E; Fernandez Rojas R; Fidock J; Barlow M; Kasmarik K; Anavatti S; Garratt M; Abbass HA
    IEEE Trans Cybern; 2021 Mar; 51(3):1542-1555. PubMed ID: 31545761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-Task Cognitive Workload Recognition Based on EEG and Domain Adaptation.
    Zhou Y; Xu Z; Niu Y; Wang P; Wen X; Wu X; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():50-60. PubMed ID: 34986098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Adaptive Human-Robotic Interaction Architecture for Augmenting Surgery Performance Using Real-Time Workload Sensing-Demonstration of a Semi-autonomous Suction Tool.
    Yang J; Barragan JA; Farrow JM; Sundaram CP; Wachs JP; Yu D
    Hum Factors; 2024 Apr; 66(4):1081-1102. PubMed ID: 36367971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological Metrics of Surgical Difficulty and Multi-Task Requirement during Robotic Surgery Skills.
    Lim C; Barragan JA; Farrow JM; Wachs JP; Sundaram CP; Yu D
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating Systemic Cognitive States from a Mixture of Physiological and Brain Signals.
    Scheutz M; Aeron S; Aygun A; de Ruiter JP; Fantini S; Fernandez C; Haga Z; Nguyen T; Lyu B
    Top Cogn Sci; 2024 Jul; 16(3):485-526. PubMed ID: 37389823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Context-Dependent Cognitive Workload Monitoring using Pupillometry for Control Room Operators to Prevent Overload.
    Bhavsar P
    IISE Trans Occup Ergon Hum Factors; 2022; 10(2):91-103. PubMed ID: 35575073
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Oppelt MP; Foltyn A; Deuschel J; Lang NR; Holzer N; Eskofier BM; Yang SH
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of mental workload with frontal EEG.
    So WKY; Wong SWH; Mak JN; Chan RHM
    PLoS One; 2017; 12(4):e0174949. PubMed ID: 28414729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of mental workload by EEG+FNIRS.
    Aghajani H; Omurtag A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3773-3776. PubMed ID: 28269110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.