These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36146245)

  • 1. Vibro-Acoustic Distributed Sensing for Large-Scale Data-Driven Leak Detection on Urban Distribution Mains.
    Bykerk L; Valls Miro J
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Study of Leak Detection in PVC Water Pipes Using Ceramic, Polymer, and Surface Acoustic Wave Sensors.
    Hamamed N; Mechri C; Mhammedi T; Yaakoubi N; El Guerjouma R; Bouaziz S; Haddar M
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Method for Pipeline Leak Detection Based on Acoustic Imaging and Deep Learning.
    Ahmad S; Ahmad Z; Kim CH; Kim JM
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leak detection in real water distribution networks based on acoustic emission and machine learning.
    Fares A; Tijani IA; Rui Z; Zayed T
    Environ Technol; 2023 Nov; 44(25):3850-3866. PubMed ID: 35506881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Contact Vibro-Acoustic Object Recognition Using Laser Doppler Vibrometry and Convolutional Neural Networks.
    Darwish A; Halkon B; Oberst S
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing deep learning-based acoustic leak detection methods towards application for water distribution systems from a data-centric perspective.
    Wu Y; Ma X; Guo G; Jia T; Huang Y; Liu S; Fan J; Wu X
    Water Res; 2024 Sep; 261():121999. PubMed ID: 38941677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced acoustic leak detection in water distribution networks using integrated generative model.
    Liu R; Zayed T; Xiao R
    Water Res; 2024 May; 254():121434. PubMed ID: 38484549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the acoustic filtering of the pipe and sensor in a buried plastic water pipe and its effect on leak detection: an experimental investigation.
    Almeida F; Brennan M; Joseph P; Whitfield S; Dray S; Paschoalini A
    Sensors (Basel); 2014 Mar; 14(3):5595-610. PubMed ID: 24658622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the leak detection efficiency in water distribution networks using noise loggers.
    Tijani IA; Abdelmageed S; Fares A; Fan KH; Hu ZY; Zayed T
    Sci Total Environ; 2022 May; 821():153530. PubMed ID: 35104524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Incremental Class-Learning Approach with Acoustic Novelty Detection for Acoustic Event Recognition.
    Bayram B; İnce G
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.
    Hu W; Zhang Y; Li L
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leak Detection in Water Pipes Using Submersible Optical Optic-Based Pressure Sensor.
    Wong L; Deo R; Rathnayaka S; Shannon B; Zhang C; Chiu WK; Kodikara J; Widyastuti H
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30513585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Through-Ice Acoustic Source Tracking Using Vision Transformers with Ordinal Classification.
    Whitaker S; Barnard A; Anderson GD; Havens TC
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pipeline Leakage Detection Using Acoustic Emission and Machine Learning Algorithms.
    Ullah N; Ahmed Z; Kim JM
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Convolutional Neural Network for In Situ AUV Thruster Health Monitoring Using Acoustic Signals.
    Yeo SJ; Choi WS; Hong SY; Song JH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Biocomposites and Glass Fiber Epoxy Composites Based on Acoustic Emission Signals, Deep Feature Extraction, and Machine Learning.
    Kek T; Potočnik P; Misson M; Bergant Z; Sorgente M; Govekar E; Šturm R
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress detection using deep neural networks.
    Li R; Liu Z
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 11):285. PubMed ID: 33380334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Neural Networks for Detection and Location of Microseismic Events and Velocity Model Inversion from Microseismic Data Acquired by Distributed Acoustic Sensing Array.
    Wamriew D; Pevzner R; Maltsev E; Pissarenko D
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cluster Analysis of Urban Acoustic Environments on Barcelona Sensor Network Data.
    Pita A; Rodriguez FJ; Navarro JM
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust sound event detection in bioacoustic sensor networks.
    Lostanlen V; Salamon J; Farnsworth A; Kelling S; Bello JP
    PLoS One; 2019; 14(10):e0214168. PubMed ID: 31647815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.