These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36146257)

  • 1. Analysis of a Clapping Vibration Energy Harvesting System in a Rotating Magnetic Field.
    Wang YR; Feng CK; Cheng CH; Chen PT
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Double Elastic Steel Wind Driven Magneto-Electric Vibration Energy Harvesting System.
    Wang YR; Chu MC
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique.
    Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center.
    Chen J; Liu X; Wang H; Wang S; Guan M
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy.
    Zhou Z; Zhang H; Qin W; Zhu P; Wang P; Du W
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A composite energy harvester based on human reciprocating motion.
    Gu X; He L; Wang H; Sun L; Zhou Z; Cheng G
    Rev Sci Instrum; 2023 Mar; 94(3):035004. PubMed ID: 37012818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectiveness Testing of a Piezoelectric Energy Harvester for an Automobile Wheel Using Stochastic Resonance.
    Zhang Y; Zheng R; Shimono K; Kaizuka T; Nakano K
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Working characteristics of a magnetostrictive vibration energy harvester for rotating car wheels.
    Liu H; Dong W; Chang Y; Gao Y; Li W
    Rev Sci Instrum; 2022 May; 93(5):055001. PubMed ID: 35649761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An energy harvesting type ultrasonic motor.
    Wang G; Xu W; Gao S; Yang B; Lu G
    Ultrasonics; 2017 Mar; 75():22-27. PubMed ID: 27898301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piezoelectric Energy Harvesting from Low-Frequency Vibrations Based on Magnetic Plucking and Indirect Impacts.
    Rosso M; Nastro A; Baù M; Ferrari M; Ferrari V; Corigliano A; Ardito R
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Development of a 2 × 2 Array Piezoelectric-Electromagnetic Hybrid Energy Harvester.
    Han B; Zhang S; Liu J; Jiang Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Energy Harvesting from Bridge Vibration Excited by Moving Vehicles with a Bi-Stable Harvester.
    Zhou Z; Zhang H; Qin W; Zhu P; Du W
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation Analysis and Experimental Study of Piezoelectric Power Generation Device Based on Shape Memory Alloy Drive.
    Tian X; Wang Z; Zhang S; Li S; Liu J; Lin J; Wang F; Yang Z; Zhu J
    Scanning; 2022; 2022():1236270. PubMed ID: 35087611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Note: Enhanced energy harvesting from low-frequency magnetic fields utilizing magneto-mechano-electric composite tuning-fork.
    Yang A; Li P; Wen Y; Yang C; Wang D; Zhang F; Zhang J
    Rev Sci Instrum; 2015 Jun; 86(6):066102. PubMed ID: 26133877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of enhanced piezoelectric energy harvester induced by human motion.
    Minami Y; Nakamachi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1627-30. PubMed ID: 23366218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Investigation on Energy Harvesting Behavior of an Array Piezoelectric Coupled Disc Damper.
    Xie X; Huang X; Wang J; Wang Z; Zhou B; Zhang J
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive Analysis of the Energy Harvesting Performance of a Fe-Ga Based Cantilever Harvester in Free Excitation and Base Excitation Mode.
    Liu H; Cong C; Zhao Q; Ma K
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.