These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36146315)

  • 1. Monitoring Wheat Lodging at Various Growth Stages.
    Jiang S; Hao J; Li H; Zuo C; Geng X; Sun X
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Wheat Lodging Extraction from Multi-Channel UAV Images Using a Lightweight Network Model.
    Yang B; Zhu Y; Zhou S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wheat lodging extraction using Improved_Unet network.
    Yu J; Cheng T; Cai N; Lin F; Zhou XG; Du S; Zhang D; Zhang G; Liang D
    Front Plant Sci; 2022; 13():1009835. PubMed ID: 36247550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Phenotyping Enabled Genetic Dissection of Crop Lodging in Wheat.
    Singh D; Wang X; Kumar U; Gao L; Noor M; Imtiaz M; Singh RP; Poland J
    Front Plant Sci; 2019; 10():394. PubMed ID: 31019521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification lodging degree of wheat using point cloud data and convolutional neural network.
    Li Y; Yang B; Zhou S; Cui Q
    Front Plant Sci; 2022; 13():968479. PubMed ID: 36237498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Extract Rice Lodging.
    Zhao X; Yuan Y; Song M; Ding Y; Lin F; Liang D; Zhang D
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31500150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lightweight Detection System with Global Attention Network (GloAN) for Rice Lodging.
    Kang G; Wang J; Zeng F; Cai Y; Kang G; Yue X
    Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating how lodging affects maize yield estimation based on UAV observations.
    Liu Y; Nie C; Zhang Z; Wang Z; Ming B; Xue J; Yang H; Xu H; Meng L; Cui N; Wu W; Jin X
    Front Plant Sci; 2022; 13():979103. PubMed ID: 36733603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring Maize Lodging Grades via Unmanned Aerial Vehicle Multispectral Image.
    Sun Q; Sun L; Shu M; Gu X; Yang G; Zhou L
    Plant Phenomics; 2019; 2019():5704154. PubMed ID: 33313529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat.
    Hassan MA; Yang M; Fu L; Rasheed A; Zheng B; Xia X; Xiao Y; He Z
    Plant Methods; 2019; 15():37. PubMed ID: 31011362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant phenomics & precision agriculture simulation of winter wheat growth by the assimilation of unmanned aerial vehicle imagery into the WOFOST model.
    Yang T; Zhang W; Zhou T; Wu W; Liu T; Sun C
    PLoS One; 2021; 16(10):e0246874. PubMed ID: 34624043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Deep-Learning-Based Approach for Wheat Yellow Rust Disease Recognition from Unmanned Aerial Vehicle Images.
    Pan Q; Gao M; Wu P; Yan J; Li S
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Stem characteristics of different wheat varieties and its relationship with lodging-resistance.].
    Wang D; Ding WH; Feng SW; Hu TZ; Li G; Li XH; Yang YY; Ru ZG
    Ying Yong Sheng Tai Xue Bao; 2016 May; 27(5):1496-1502. PubMed ID: 29732811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel wheat lodging resistance evaluation method and device based on the thrust force of the stalks.
    Feng S; Kong D; Ding W; Ru Z; Li G; Niu L
    PLoS One; 2019; 14(11):e0224732. PubMed ID: 31714911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of planting density and spraying PP333 on winter wheat lodging-resistance and grain yield].
    Chen XG; Wang ZL; Peng DL; Li Y; Cai T; Wang P; Chen EY
    Ying Yong Sheng Tai Xue Bao; 2011 Jun; 22(6):1465-70. PubMed ID: 21941746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing Macro Disease Index of Wheat Stripe Rust Based on Segformer with Complex Background in the Field.
    Deng J; Lv X; Yang L; Zhao B; Zhou C; Yang Z; Jiang J; Ning N; Zhang J; Shi J; Ma Z
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sentinel-2 Data for Precision Agriculture?-A UAV-Based Assessment.
    Bukowiecki J; Rose T; Kage H
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform.
    Hassan MA; Yang M; Rasheed A; Yang G; Reynolds M; Xia X; Xiao Y; He Z
    Plant Sci; 2019 May; 282():95-103. PubMed ID: 31003615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entropy Weight Ensemble Framework for Yield Prediction of Winter Wheat Under Different Water Stress Treatments Using Unmanned Aerial Vehicle-Based Multispectral and Thermal Data.
    Fei S; Hassan MA; Ma Y; Shu M; Cheng Q; Li Z; Chen Z; Xiao Y
    Front Plant Sci; 2021; 12():730181. PubMed ID: 34987529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of Wheat Heading Stage Using Convolutional Neural Networks on Multispectral UAV Imaging Data.
    Li Y; Cao G; Liu D; Zhang J; Li L; Chen C
    Comput Intell Neurosci; 2022; 2022():3655804. PubMed ID: 36465952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.