These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 36146316)

  • 1. Automatic Assessment of Aphasic Speech Sensed by Audio Sensors for Classification into Aphasia Severity Levels to Recommend Speech Therapies.
    Herath HMDPM; Weraniyagoda WASA; Rajapaksha RTM; Wijesekara PADSN; Sudheera KLK; Chong PHJ
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Evaluation of Machine Learning Frameworks for Aphasia Assessment.
    Mahmoud SS; Kumar A; Li Y; Tang Y; Fang Q
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33916993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speech emotion recognition using machine learning techniques: Feature extraction and comparison of convolutional neural network and random forest.
    Rezapour Mashhadi MM; Osei-Bonsu K
    PLoS One; 2023; 18(11):e0291500. PubMed ID: 37988352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DCNN for Pig Vocalization and Non-Vocalization Classification: Evaluate Model Robustness with New Data.
    Pann V; Kwon KS; Kim B; Jang DH; Kim JB
    Animals (Basel); 2024 Jul; 14(14):. PubMed ID: 39061490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient Deep Learning Based Method for Speech Assessment of Mandarin-Speaking Aphasic Patients.
    Mahmoud SS; Kumar A; Tang Y; Li Y; Gu X; Fu J; Fang Q
    IEEE J Biomed Health Inform; 2020 Nov; 24(11):3191-3202. PubMed ID: 32750967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IoT-Enabled WBAN and Machine Learning for Speech Emotion Recognition in Patients.
    Olatinwo DD; Abu-Mahfouz A; Hancke G; Myburgh H
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of respiratory sounds classification methods based on cepstral analysis and artificial neural networks.
    Semmad A; Bahoura M
    Comput Biol Med; 2024 Mar; 171():108190. PubMed ID: 38387384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-based infant crying interpretation.
    Hammoud M; Getahun MN; Baldycheva A; Somov A
    Front Artif Intell; 2024; 7():1337356. PubMed ID: 38390346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilevel hybrid handcrafted feature extraction based depression recognition method using speech.
    Taşcı B
    J Affect Disord; 2024 Nov; 364():9-19. PubMed ID: 39127304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect on speech emotion classification of a feature selection approach using a convolutional neural network.
    Amjad A; Khan L; Chang HT
    PeerJ Comput Sci; 2021; 7():e766. PubMed ID: 34805511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A temporal dependency feature in lower dimension for lung sound signal classification.
    Kwon AM; Kang K
    Sci Rep; 2022 May; 12(1):7889. PubMed ID: 35551232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of Infant Cry Based on Hybrid Audio Features and ResLSTM.
    Qiu Y; Yang X; Yang S; Gong Y; Lv Q; Yang B
    J Voice; 2024 Sep; ():. PubMed ID: 39306499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparison of Machine Learning Algorithms and Feature Sets for Automatic Vocal Emotion Recognition in Speech.
    Doğdu C; Kessler T; Schneider D; Shadaydeh M; Schweinberger SR
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infant Cry Signal Diagnostic System Using Deep Learning and Fused Features.
    Zayed Y; Hasasneh A; Tadj C
    Diagnostics (Basel); 2023 Jun; 13(12):. PubMed ID: 37371002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hybrid Time-Distributed Deep Neural Architecture for Speech Emotion Recognition.
    De Lope J; Graña M
    Int J Neural Syst; 2022 Jun; 32(6):2250024. PubMed ID: 35575003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep neural architectures for dialect classification with single frequency filtering and zero-time windowing feature representations.
    Kethireddy R; Kadiri SR; Gangashetty SV
    J Acoust Soc Am; 2022 Feb; 151(2):1077. PubMed ID: 35232068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ensemble learning with speaker embeddings in multiple speech task stimuli for depression detection.
    Liu Z; Yu H; Li G; Chen Q; Ding Z; Feng L; Yao Z; Hu B
    Front Neurosci; 2023; 17():1141621. PubMed ID: 37034153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Severity in People with Aphasia: A Natural Language Processing and Machine Learning Approach.
    Day M; Dey RK; Baucum M; Paek EJ; Park H; Khojandi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2299-2302. PubMed ID: 34891746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A NEW ARTIFICIAL INTELLIGENCE-BASED CLINICAL DECISION SUPPORT SYSTEM FOR DIAGNOSIS OF MAJOR PSYCHIATRIC DISEASES BASED ON VOICE ANALYSIS.
    Cansel N; Faruk Alcin Ö; Furkan Yılmaz Ö; Ari A; Akan M; Ucuz İ
    Psychiatr Danub; 2023; 35(4):489-499. PubMed ID: 37992093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Dysarthria Severity Classification: A Study on Acoustic Features and Deep Learning Techniques.
    Joshy AA; Rajan R
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1147-1157. PubMed ID: 35452390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.