These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36146324)

  • 61. Generalized Simultaneous Localization and Mapping (G-SLAM) as unification framework for natural and artificial intelligences: towards reverse engineering the hippocampal/entorhinal system and principles of high-level cognition.
    Safron A; Çatal O; Verbelen T
    Front Syst Neurosci; 2022; 16():787659. PubMed ID: 36246500
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Research and Implementation of Autonomous Navigation for Mobile Robots Based on SLAM Algorithm under ROS.
    Zhao J; Liu S; Li J
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684793
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Improved Point-Line Feature Based Visual SLAM Method for Complex Environments.
    Zhou F; Zhang L; Deng C; Fan X
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283161
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Exploration-Based SLAM (e-SLAM) for the Indoor Mobile Robot Using Lidar.
    Ismail H; Roy R; Sheu LJ; Chieng WH; Tang LC
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214588
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A novel combined SLAM based on RBPF-SLAM and EIF-SLAM for mobile system sensing in a large scale environment.
    He B; Zhang S; Yan T; Zhang T; Liang Y; Zhang H
    Sensors (Basel); 2011; 11(11):10197-219. PubMed ID: 22346639
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A survey: which features are required for dynamic visual simultaneous localization and mapping?
    Xu Z; Rong Z; Wu Y
    Vis Comput Ind Biomed Art; 2021 Jul; 4(1):20. PubMed ID: 34269925
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Semantic Point Cloud Mapping of LiDAR Based on Probabilistic Uncertainty Modeling for Autonomous Driving.
    Cho S; Kim C; Park J; Sunwoo M; Jo K
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33086561
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Integrate Point-Cloud Segmentation with 3D LiDAR Scan-Matching for Mobile Robot Localization and Mapping.
    Li X; Du S; Li G; Li H
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31906166
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Autonomous Navigation System of Greenhouse Mobile Robot Based on 3D Lidar and 2D Lidar SLAM.
    Jiang S; Wang S; Yi Z; Zhang M; Lv X
    Front Plant Sci; 2022; 13():815218. PubMed ID: 35360319
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Visual Semantic Landmark-Based Robust Mapping and Localization for Autonomous Indoor Parking.
    Zhao J; Huang Y; He X; Zhang S; Ye C; Feng T; Xiong L
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621195
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Research on SLAM Road Sign Observation Based on Particle Filter.
    Wang Y; Wang X
    Comput Intell Neurosci; 2022; 2022():4478978. PubMed ID: 35928027
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The Accuracy Comparison of Three Simultaneous Localization and Mapping (SLAM)-Based Indoor Mapping Technologies.
    Chen Y; Tang J; Jiang C; Zhu L; Lehtomäki M; Kaartinen H; Kaijaluoto R; Wang Y; Hyyppä J; Hyyppä H; Zhou H; Pei L; Chen R
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30257505
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor.
    Zhang L; Shen P; Zhu G; Wei W; Song H
    Sensors (Basel); 2015 Aug; 15(8):19937-67. PubMed ID: 26287198
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Swarm SLAM: Challenges and Perspectives.
    Kegeleirs M; Grisetti G; Birattari M
    Front Robot AI; 2021; 8():618268. PubMed ID: 33816567
    [TBL] [Abstract][Full Text] [Related]  

  • 75. SLAM on the Hexagonal Grid.
    Duszak P
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015980
    [TBL] [Abstract][Full Text] [Related]  

  • 76. PLI-VINS: Visual-Inertial SLAM Based on Point-Line Feature Fusion in Indoor Environment.
    Zhao Z; Song T; Xing B; Lei Y; Wang Z
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891134
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pruning Points Detection of Sweet Pepper Plants Using 3D Point Clouds and Semantic Segmentation Neural Network.
    Giang TTH; Ryoo YJ
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112381
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Kinematic/Dynamic SLAM for Autonomous Vehicles Using the Linear Parameter Varying Approach.
    Vial P; Puig V
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365908
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Real-Time Photometric Calibrated Monocular Direct Visual SLAM.
    Liu P; Yuan X; Zhang C; Song Y; Liu C; Li Z
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31430936
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The Navigation of Mobile Robot in the Indoor Dynamic Unknown Environment Based on Decision Tree Algorithm.
    Yan Y; Ma W; Li Y; Wong S; He P; Zhu S; Yin X
    Comput Intell Neurosci; 2022; 2022():3492175. PubMed ID: 35769275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.