These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36146370)

  • 1. A Predefined-Time Control for the Laser Acquisition in Space Gravitational Wave Detection Mission.
    Zhang J; Wang P; Lian X; Lu L; Liu W
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-satellite laser link acquisition with dual-way scanning for Space Advanced Gravity Measurements mission.
    Zhang JY; Ming M; Jiang YZ; Duan HZ; Yeh HC
    Rev Sci Instrum; 2018 Jun; 89(6):064501. PubMed ID: 29960510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Satellite Gravimetry: A Review of Its Realization.
    Flechtner F; Reigber C; Rummel R; Balmino G
    Surv Geophys; 2021; 42(5):1029-1074. PubMed ID: 34642516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser acquisition experimental demonstration for space gravitational wave detection missions.
    Gao R; Liu H; Zhao Y; Luo Z; Shen J; Jin G
    Opt Express; 2021 Mar; 29(5):6368-6383. PubMed ID: 33726160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beat-Notes Acquisition of Laser Heterodyne Interference Signal for Space Gravitational Wave Detection.
    Wang Z; Yu T; Sui Y; Wang Z
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST.
    Bai Y; Li Z; Hu M; Liu L; Qu S; Tan D; Tu H; Wu S; Yin H; Li H; Zhou Z
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28832538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. gLISA: geosynchronous laser interferometer space antenna concepts with off-the-shelf satellites.
    Tinto M; DeBra D; Buchman S; Tilley S
    Rev Sci Instrum; 2015 Jan; 86(1):014501. PubMed ID: 25638101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic, high-speed, high-precision acquisition scheme with QPD for the Taiji program.
    Gao R; Liu H; Zhao Y; Luo Z; Jin G
    Opt Express; 2021 Jan; 29(2):821-836. PubMed ID: 33726310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodological demonstration of laser beam pointing control for space gravitational wave detection missions.
    Dong YH; Liu HS; Luo ZR; Li YQ; Jin G
    Rev Sci Instrum; 2014 Jul; 85(7):074501. PubMed ID: 25085155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Low-Thrust Maneuver Planning for Space Gravitational Wave Formation Reconfiguration Based on Improved Particle Swarm Optimization Algorithm.
    Lu Z; Wang J; Lian X; Zhang J; Zhang Y; Yang J
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attitude-Orbit Coupled Control of Gravitational Wave Detection Spacecraft with Communication Delays.
    Zhang Y; Liu Y; Yang J; Lu Z; Zhang J
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Architecture and performance analysis of an optical metrology terminal for satellite-to-satellite laser ranging.
    Mandel O; Sell A; Chwalla M; Schuldt T; Krauser J; Weise D; Braxmaier C
    Appl Opt; 2020 Jan; 59(3):653-661. PubMed ID: 32225191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a Multi-Satellite Dynamic Mission Scheduling Model Based on Mission Priority in Emergency Response.
    Cui J; Zhang X
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the precision limits of interferometric satellite geodesy missions.
    Conlon LO; Michel T; Guccione G; McKenzie K; Assad SM; Lam PK
    NPJ Microgravity; 2022 Jun; 8(1):21. PubMed ID: 35676507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser link acquisition demonstration for the GRACE Follow-On mission.
    Wuchenich DM; Mahrdt C; Sheard BS; Francis SP; Spero RE; Miller J; Mow-Lowry CM; Ward RL; Klipstein WM; Heinzel G; Danzmann K; McClelland DE; Shaddock DA
    Opt Express; 2014 May; 22(9):11351-66. PubMed ID: 24921832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Frequency Noise Evaluation on a Commercial Magnetoimpedance Sensor at Submillihertz Frequencies for Space Magnetic Field Detection.
    Wang T; Kang C; Chai G
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31717477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New method for gravitational wave detection with atomic sensors.
    Graham PW; Hogan JM; Kasevich MA; Rajendran S
    Phys Rev Lett; 2013 Apr; 110(17):171102. PubMed ID: 23679702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evaluation of phasemeter prototype performance for the space gravitational waves detection.
    Liu HS; Dong YH; Li YQ; Luo ZR; Jin G
    Rev Sci Instrum; 2014 Feb; 85(2):024503. PubMed ID: 24593376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Effective Sensor Architecture for Full-Attitude Determination in the HERMES Nano-Satellites.
    Colagrossi A; Lavagna M; Bertacin R
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency Division Control of Line-of-Sight Tracking for Space Gravitational Wave Detector.
    Deng H; Meng Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.