These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 36146441)

  • 1. Gait Detection from a Wrist-Worn Sensor Using Machine Learning Methods: A Daily Living Study in Older Adults and People with Parkinson's Disease.
    Brand YE; Schwartz D; Gazit E; Buchman AS; Gilad-Bachrach R; Hausdorff JM
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-World Gait Detection Using a Wrist-Worn Inertial Sensor: Validation Study.
    Kluge F; Brand YE; Micó-Amigo ME; Bertuletti S; D'Ascanio I; Gazit E; Bonci T; Kirk C; Küderle A; Palmerini L; Paraschiv-Ionescu A; Salis F; Soltani A; Ullrich M; Alcock L; Aminian K; Becker C; Brown P; Buekers J; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; Echevarria C; Eskofier B; Evers J; Garcia-Aymerich J; Hache T; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Koch S; Maetzler W; Megaritis D; Niessen M; Perlman O; Schwickert L; Scott K; Sharrack B; Singleton D; Vereijken B; Vogiatzis I; Yarnall A; Rochester L; Mazzà C; Del Din S; Mueller A
    JMIR Form Res; 2024 May; 8():e50035. PubMed ID: 38691395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning-based motor assessment of Parkinson's disease using postural sway, gait and lifestyle features on crowdsourced smartphone data.
    Abujrida H; Agu E; Pahlavan K
    Biomed Phys Eng Express; 2020 Mar; 6(3):035005. PubMed ID: 33438650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting Sensitive Mobility Features for Parkinson's Disease Stages Via Machine Learning.
    Mirelman A; Ben Or Frank M; Melamed M; Granovsky L; Nieuwboer A; Rochester L; Del Din S; Avanzino L; Pelosin E; Bloem BR; Della Croce U; Cereatti A; Bonato P; Camicioli R; Ellis T; Hamilton JL; Hass CJ; Almeida QJ; Inbal M; Thaler A; Shirvan J; Cedarbaum JM; Giladi N; Hausdorff JM
    Mov Disord; 2021 Sep; 36(9):2144-2155. PubMed ID: 33955603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Objective characterization of daily living transitions in patients with Parkinson's disease using a single body-fixed sensor.
    Bernad-Elazari H; Herman T; Mirelman A; Gazit E; Giladi N; Hausdorff JM
    J Neurol; 2016 Aug; 263(8):1544-51. PubMed ID: 27216626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning.
    Kiprijanovska I; Gjoreski H; Gams M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting Parkinson's Disease from Wrist-Worn Accelerometry in the U.K. Biobank.
    Williamson JR; Telfer B; Mullany R; Friedl KE
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a Step Detection Algorithm during Straight Walking and Turning in Patients with Parkinson's Disease and Older Adults Using an Inertial Measurement Unit at the Lower Back.
    Pham MH; Elshehabi M; Haertner L; Del Din S; Srulijes K; Heger T; Synofzik M; Hobert MA; Faber GS; Hansen C; Salkovic D; Ferreira JJ; Berg D; Sanchez-Ferro Á; van Dieën JH; Becker C; Rochester L; Schmidt G; Maetzler W
    Front Neurol; 2017; 8():457. PubMed ID: 28928711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Gait Detection in Older Adults during Daily-Living using Self-Supervised Learning of Wrist-Worn Accelerometer Data: Development and Validation of ElderNet.
    Brand YE; Kluge F; Palmerini L; Paraschiv-Ionescu A; Becker C; Cereatti A; Maetzler W; Sharrack B; Vereijken B; Yarnall AJ; Rochester L; Del Din S; Muller A; Buchman AS; Hausdorff JM; Perlman O
    Res Sq; 2024 Mar; ():. PubMed ID: 38559043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time detection of freezing of gait in Parkinson's disease using multi-head convolutional neural networks and a single inertial sensor.
    Borzì L; Sigcha L; Rodríguez-Martín D; Olmo G
    Artif Intell Med; 2023 Jan; 135():102459. PubMed ID: 36628783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction and detection of freezing of gait in Parkinson's disease from plantar pressure data using long short-term memory neural-networks.
    Shalin G; Pardoel S; Lemaire ED; Nantel J; Kofman J
    J Neuroeng Rehabil; 2021 Nov; 18(1):167. PubMed ID: 34838066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients.
    Romijnders R; Warmerdam E; Hansen C; Welzel J; Schmidt G; Maetzler W
    J Neuroeng Rehabil; 2021 Feb; 18(1):28. PubMed ID: 33549105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning models for Parkinson's disease detection and stage classification based on spatial-temporal gait parameters.
    Ferreira MIASN; Barbieri FA; Moreno VC; Penedo T; Tavares JMRS
    Gait Posture; 2022 Oct; 98():49-55. PubMed ID: 36049418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring freezing of gait during daily-life: an open-source, wearable sensors approach.
    Mancini M; Shah VV; Stuart S; Curtze C; Horak FB; Safarpour D; Nutt JG
    J Neuroeng Rehabil; 2021 Jan; 18(1):1. PubMed ID: 33397401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy and precision of wrist-worn actigraphy for measuring steps taken during over-ground and treadmill walking in adults with Parkinson's disease.
    Cederberg KLJ; Jeng B; Sasaki JE; Lai B; Bamman M; Motl RW
    Parkinsonism Relat Disord; 2021 Jul; 88():102-107. PubMed ID: 34171566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of Arm Swing during Walking in Healthy Adults and Parkinson's Disease Patients: Wearable Sensor-Based Algorithm Development and Validation.
    Warmerdam E; Romijnders R; Welzel J; Hansen C; Schmidt G; Maetzler W
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33096899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking.
    Hu B; Dixon PC; Jacobs JV; Dennerlein JT; Schiffman JM
    J Biomech; 2018 Apr; 71():37-42. PubMed ID: 29452755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early Detection of Freezing of Gait during Walking Using Inertial Measurement Unit and Plantar Pressure Distribution Data.
    Pardoel S; Shalin G; Nantel J; Lemaire ED; Kofman J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33806984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turning Detection During Gait: Algorithm Validation and Influence of Sensor Location and Turning Characteristics in the Classification of Parkinson's Disease.
    Rehman RZU; Klocke P; Hryniv S; Galna B; Rochester L; Del Din S; Alcock L
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson's Populations.
    Celik Y; Stuart S; Woo WL; Godfrey A
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.