These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 36146572)

  • 1. Role of Immune Cells and Receptors in Cancer Treatment: An Immunotherapeutic Approach.
    Mukherjee AG; Wanjari UR; Namachivayam A; Murali R; Prabakaran DS; Ganesan R; Renu K; Dey A; Vellingiri B; Ramanathan G; Doss C GP; Gopalakrishnan AV
    Vaccines (Basel); 2022 Sep; 10(9):. PubMed ID: 36146572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autologous Immune Enhancement Therapy for Cancer - Our experience since 2004.
    Terunuma H
    J Stem Cells Regen Med; 2012; 8(3):205-6. PubMed ID: 24693200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunotherapeutic and their immunological aspects: Current treatment strategies and agents.
    Jain M; Mishra A; Singh MK; Shyam H; Kumar S; Shankar P; Singh S
    Natl J Maxillofac Surg; 2022; 13(3):322-329. PubMed ID: 36683928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From a Patient Advocate's Perspective: Does Cancer Immunotherapy Represent a Paradigm Shift?
    Madden DL
    Curr Oncol Rep; 2018 Feb; 20(1):8. PubMed ID: 29411148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic profile of dendritic and T cells in the lymph node of Balb/C mice with breast cancer submitted to dendritic cells immunotherapy.
    da Cunha A; Antoniazi Michelin M; Cândido Murta EF
    Immunol Lett; 2016 Sep; 177():25-37. PubMed ID: 27423825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing NK Cells for Cancer Treatment.
    Minetto P; Guolo F; Pesce S; Greppi M; Obino V; Ferretti E; Sivori S; Genova C; Lemoli RM; Marcenaro E
    Front Immunol; 2019; 10():2836. PubMed ID: 31867006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Cellular and Molecular Immunotherapy in Prostate Cancer.
    Mukherjee AG; Wanjari UR; Prabakaran DS; Ganesan R; Renu K; Dey A; Vellingiri B; Kandasamy S; Ramesh T; Gopalakrishnan AV
    Vaccines (Basel); 2022 Aug; 10(8):. PubMed ID: 36016257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunotherapy for cancer treatment.
    Donátová K; Nováková E; Šupolíková M
    Klin Onkol; 2022; 35(4):284-289. PubMed ID: 35989085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor immunotherapy: New aspects of natural killer cells.
    Li Y; Sun R
    Chin J Cancer Res; 2018 Apr; 30(2):173-196. PubMed ID: 29861604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune escape mechanisms and immunotherapy of urothelial bladder cancer.
    Yang Z; Xu Y; Bi Y; Zhang N; Wang H; Xing T; Bai S; Shen Z; Naz F; Zhang Z; Yin L; Shi M; Wang L; Wang L; Wang S; Xu L; Su X; Wu S; Yu C
    J Clin Transl Res; 2021 Aug; 7(4):485-500. PubMed ID: 34541363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural Killer Cells: The Linchpin for Successful Cancer Immunotherapy.
    Shaver KA; Croom-Perez TJ; Copik AJ
    Front Immunol; 2021; 12():679117. PubMed ID: 33995422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of advanced hepatocellular carcinoma: immunotherapy from checkpoint blockade to potential of cellular treatment.
    Siu EH; Chan AW; Chong CC; Chan SL; Lo KW; Cheung ST
    Transl Gastroenterol Hepatol; 2018; 3():89. PubMed ID: 30603725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy.
    Zhang C; Liu Y
    Front Immunol; 2020; 11():1295. PubMed ID: 32714324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing the immune system to improve cancer therapy.
    Papaioannou NE; Beniata OV; Vitsos P; Tsitsilonis O; Samara P
    Ann Transl Med; 2016 Jul; 4(14):261. PubMed ID: 27563648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitors of Immune Checkpoints: Small Molecule- and Peptide-Based Approaches.
    Fuchs N; Zhang L; Calvo-Barreiro L; Kuncewicz K; Gabr M
    J Pers Med; 2024 Jan; 14(1):. PubMed ID: 38248769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potent Bidirectional Cross-Talk Between Plasmacytoid Dendritic Cells and γδT Cells Through BTN3A, Type I/II IFNs and Immune Checkpoints.
    Girard P; Ponsard B; Charles J; Chaperot L; Aspord C
    Front Immunol; 2020; 11():861. PubMed ID: 32435249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pancreatic cancer: role of the immune system in cancer progression and vaccine-based immunotherapy.
    Amedei A; Niccolai E; Prisco D
    Hum Vaccin Immunother; 2014; 10(11):3354-68. PubMed ID: 25483688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell Fate Reprogramming in the Era of Cancer Immunotherapy.
    Zimmermannova O; Caiado I; Ferreira AG; Pereira CF
    Front Immunol; 2021; 12():714822. PubMed ID: 34367185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of Cell-Cell Communication in Anaplastic Thyroid Cancer as an Immunotherapeutic Opportunity.
    Chakraborty S; Carnazza M; Jarboe T; DeSouza N; Li XM; Moscatello A; Geliebter J; Tiwari RK
    Adv Exp Med Biol; 2021; 1350():33-66. PubMed ID: 34888843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.