These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 36147924)
1. Identification of pulmonary adenocarcinoma and benign lesions in isolated solid lung nodules based on a nomogram of intranodal and perinodal CT radiomic features. Yi L; Peng Z; Chen Z; Tao Y; Lin Z; He A; Jin M; Peng Y; Zhong Y; Yan H; Zuo M Front Oncol; 2022; 12():924055. PubMed ID: 36147924 [TBL] [Abstract][Full Text] [Related]
2. Establishment and verification of a prediction model based on clinical characteristics and computed tomography radiomics parameters for distinguishing benign and malignant pulmonary nodules. Hou X; Wu M; Chen J; Zhang R; Wang Y; Zhang S; Yuan Z; Feng J; Xu L J Thorac Dis; 2024 Mar; 16(3):1984-1995. PubMed ID: 38617763 [TBL] [Abstract][Full Text] [Related]
3. Development and Validation of a Radiomics Nomogram for Differentiating Pulmonary Cryptococcosis and Lung Adenocarcinoma in Solitary Pulmonary Solid Nodule. Zhao J; Sun L; Sun K; Wang T; Wang B; Yang Y; Wu C; Sun X Front Oncol; 2021; 11():759840. PubMed ID: 34858836 [TBL] [Abstract][Full Text] [Related]
4. The diagnostic value of CT-based radiomics nomogram for solitary indeterminate smoothly marginated solid pulmonary nodules. Zhang C; Zhou H; Li M; Yang X; Liu J; Dai Z; Ma H; Wang P Front Oncol; 2024; 14():1427404. PubMed ID: 39015490 [TBL] [Abstract][Full Text] [Related]
5. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram. Liu A; Wang Z; Yang Y; Wang J; Dai X; Wang L; Lu Y; Xue F Cancer Commun (Lond); 2020 Jan; 40(1):16-24. PubMed ID: 32125097 [TBL] [Abstract][Full Text] [Related]
6. Application Potential of Radiomics based on the Unenhanced CT Image for the Identification of Benign or Malignant Pulmonary Nodules. Zhang L; Zeng B; Liu J; Lin H; Lei P; Xu R; Fan B Curr Med Imaging; 2023 Oct; ():. PubMed ID: 37916631 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Radiomic Models Based on Low-Dose and Standard-Dose CT for Prediction of Adenocarcinomas and Benign Lesions in Solid Pulmonary Nodules. Liu J; Xu H; Qing H; Li Y; Yang X; He C; Ren J; Zhou P Front Oncol; 2020; 10():634298. PubMed ID: 33604303 [TBL] [Abstract][Full Text] [Related]
8. Radiomics nomogram for preoperative differentiation of pulmonary mucinous adenocarcinoma from tuberculoma in solitary pulmonary solid nodules. Zhang J; Hao L; Qi M; Xu Q; Zhang N; Feng H; Shi G BMC Cancer; 2023 Mar; 23(1):261. PubMed ID: 36944978 [TBL] [Abstract][Full Text] [Related]
9. Radiomics nomogram analysis of T2-fBLADE-TSE in pulmonary nodules evaluation. Yang S; Wang Y; Shi Y; Yang G; Yan Q; Shen J; Wang Q; Zhang H; Yang S; Shan F; Zhang Z Magn Reson Imaging; 2022 Jan; 85():80-86. PubMed ID: 34666158 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Radiomics Models Based on Computed Tomography for Distinguishing Between Benign and Malignant Thyroid Nodules. Kong D; Zhang J; Shan W; Duan S; Guo L J Comput Assist Tomogr; 2022 Nov-Dec 01; 46(6):978-985. PubMed ID: 35759774 [TBL] [Abstract][Full Text] [Related]
11. A comprehensive nomogram combining CT-based radiomics with clinical features for differentiation of benign and malignant lung subcentimeter solid nodules. Chen C; Geng Q; Song G; Zhang Q; Wang Y; Sun D; Zeng Q; Dai Z; Wang G Front Oncol; 2023; 13():1066360. PubMed ID: 37007065 [TBL] [Abstract][Full Text] [Related]
12. A CT-Based Radiomics Nomogram to Predict Complete Ablation of Pulmonary Malignancy: A Multicenter Study. Zhang G; Yang H; Zhu X; Luo J; Zheng J; Xu Y; Zheng Y; Wei Y; Mei Z; Shao G Front Oncol; 2022; 12():841678. PubMed ID: 35223526 [TBL] [Abstract][Full Text] [Related]
13. Differentiating minimally invasive and invasive adenocarcinomas in patients with solitary sub-solid pulmonary nodules with a radiomics nomogram. Feng B; Chen X; Chen Y; Li Z; Hao Y; Zhang C; Li R; Liao Y; Zhang X; Huang Y; Long W Clin Radiol; 2019 Jul; 74(7):570.e1-570.e11. PubMed ID: 31056198 [TBL] [Abstract][Full Text] [Related]
14. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction. Sun Y; Li C; Jin L; Gao P; Zhao W; Ma W; Tan M; Wu W; Duan S; Shan Y; Li M Eur Radiol; 2020 Jul; 30(7):3650-3659. PubMed ID: 32162003 [TBL] [Abstract][Full Text] [Related]
15. Predicting the Ki-67 proliferation index in pulmonary adenocarcinoma patients presenting with subsolid nodules: construction of a nomogram based on CT images. Yan J; Xue X; Gao C; Guo Y; Wu L; Zhou C; Chen F; Xu M Quant Imaging Med Surg; 2022 Jan; 12(1):642-652. PubMed ID: 34993108 [TBL] [Abstract][Full Text] [Related]
16. Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Beig N; Khorrami M; Alilou M; Prasanna P; Braman N; Orooji M; Rakshit S; Bera K; Rajiah P; Ginsberg J; Donatelli C; Thawani R; Yang M; Jacono F; Tiwari P; Velcheti V; Gilkeson R; Linden P; Madabhushi A Radiology; 2019 Mar; 290(3):783-792. PubMed ID: 30561278 [TBL] [Abstract][Full Text] [Related]
17. Clinical and CT Radiomics Nomogram for Preoperative Differentiation of Pulmonary Adenocarcinoma From Tuberculoma in Solitary Solid Nodule. Zhuo Y; Zhan Y; Zhang Z; Shan F; Shen J; Wang D; Yu M Front Oncol; 2021; 11():701598. PubMed ID: 34712605 [TBL] [Abstract][Full Text] [Related]
18. Predicting the pathological invasiveness in patients with a solitary pulmonary nodule via Shapley additive explanations interpretation of a tree-based machine learning radiomics model: a multicenter study. Zhang R; Hong M; Cai H; Liang Y; Chen X; Liu Z; Wu M; Zhou C; Bao C; Wang H; Yang S; Hu Q Quant Imaging Med Surg; 2023 Dec; 13(12):7828-7841. PubMed ID: 38106261 [TBL] [Abstract][Full Text] [Related]
19. Diagnosis of Invasive Lung Adenocarcinoma Based on Chest CT Radiomic Features of Part-Solid Pulmonary Nodules: A Multicenter Study. Wu G; Woodruff HC; Shen J; Refaee T; Sanduleanu S; Ibrahim A; Leijenaar RTH; Wang R; Xiong J; Bian J; Wu J; Lambin P Radiology; 2020 Nov; 297(2):451-458. PubMed ID: 32840472 [TBL] [Abstract][Full Text] [Related]
20. Classification of solid pulmonary nodules using a machine-learning nomogram based on Ren C; Xu M; Zhang J; Zhang F; Song S; Sun Y; Wu K; Cheng J Ann Transl Med; 2022 Dec; 10(23):1265. PubMed ID: 36618813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]