These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36148091)

  • 1. Exploring the smart wearable payment device adoption intention: Using the symmetrical and asymmetrical analysis methods.
    Hayat N; Al Mamun A; Salameh AA; Ali MH; Hussain WMHW; Zainol NR
    Front Psychol; 2022; 13():863544. PubMed ID: 36148091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the intention and adoption of wearable payment devices using hybrid SEM-neural network analysis.
    Al Mamun A; Naznen F; Yang M; Yang Q; Wu M; Masukujjaman M
    Sci Rep; 2023 Jul; 13(1):11217. PubMed ID: 37433838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the intention to adopt wearable payment devices in China: The use of hybrid SEM-Neural network approach.
    Luyao L; Al Mamun A; Hayat N; Yang Q; Hoque ME; Zainol NR
    PLoS One; 2022; 17(8):e0273849. PubMed ID: 36040924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How health motivation moderates the effect of intention and usage of wearable medical devices? An empirical study in Malaysia.
    Hayat N; Zainol NR; Salameh AA; Al Mamun A; Yang Q; Md Salleh MF
    Front Public Health; 2022; 10():931557. PubMed ID: 36045735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart technology for healthcare: Exploring the antecedents of adoption intention of healthcare wearable technology.
    Chau KY; Lam MHS; Cheung ML; Tso EKH; Flint SW; Broom DR; Tse G; Lee KY
    Health Psychol Res; 2019 Mar; 7(1):8099. PubMed ID: 31583292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors influencing Australian podiatrists' behavioural intentions to adopt a smart insole into clinical practice: a mixed methods study.
    Macdonald EM; Perrin BM; Kingsley MIC
    J Foot Ankle Res; 2020 Jun; 13(1):28. PubMed ID: 32487234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Usage Intentions of Wearable Medical Devices: A Demonstration Study.
    Chang CC
    Interact J Med Res; 2020 Sep; 9(3):e19776. PubMed ID: 32945778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the mass adoption of mobile payment for e-hailing services using SEM-MGA.
    Long S; Al Mamun A; Yang Q; Gao J; Hussain WMHW; Shami SSAA
    PLoS One; 2023; 18(10):e0287300. PubMed ID: 37831669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding consumers' intentions to purchase smart clothing using PLS-SEM and fsQCA.
    Chen S; Ye J
    PLoS One; 2023; 18(9):e0291870. PubMed ID: 37725606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors influencing the adoption intention of using mobile financial service during the COVID-19 pandemic: the role of FinTech.
    Yan C; Siddik AB; Akter N; Dong Q
    Environ Sci Pollut Res Int; 2023 May; 30(22):61271-61289. PubMed ID: 34773583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating older adults users' willingness to adopt wearable devices by integrating the technology acceptance model (UTAUT2) and the Technology Readiness Index theory.
    Wu C; Lim GG
    Front Public Health; 2024; 12():1449594. PubMed ID: 39421816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Mediating Influence of the Unified Theory of Acceptance and Use of Technology on the Relationship Between Internal Health Locus of Control and Mobile Health Adoption: Cross-sectional Study.
    Ahadzadeh AS; Wu SL; Ong FS; Deng R
    J Med Internet Res; 2021 Dec; 23(12):e28086. PubMed ID: 34964718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding consumer acceptance of healthcare wearable devices: An integrated model of UTAUT and TTF.
    Wang H; Tao D; Yu N; Qu X
    Int J Med Inform; 2020 Jul; 139():104156. PubMed ID: 32387819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the mass adoption potential of wearable fitness devices in Malaysia.
    Hayat N; Salameh AA; Mamun AA; Alam SS; Zainol NR
    Digit Health; 2023; 9():20552076231180728. PubMed ID: 37325073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on elderly users' intentions to accept wearable devices based on the improved UTAUT model.
    Chen J; Wang T; Fang Z; Wang H
    Front Public Health; 2022; 10():1035398. PubMed ID: 36699866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting wearable ECG device adoption by general practitioners for atrial fibrillation screening: cross-sectional study.
    Yao Y; Li Z; He Y; Zhang Y; Guo Z; Lei Y; Zhao Q; Li D; Zhang Z; Zhang Y; Liao X
    Front Public Health; 2023; 11():1128127. PubMed ID: 37213597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the adoption of medical wearable devices among the senior adults: Using hybrid SEM-neural network approach.
    Xinyan Z; Mamun AA; Ali MH; Siyu L; Yang Q; Hayat N
    Front Public Health; 2022; 10():1016065. PubMed ID: 36388276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring trust determinants influencing the intention to use fintech via SEM approach: Evidence from Pakistan.
    Zhao H; Khaliq N; Li C; Rehman FU; Popp J
    Heliyon; 2024 Apr; 10(8):e29716. PubMed ID: 38665577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable Technology Acceptance in Health Care Based on National Culture Differences: Cross-Country Analysis Between Chinese and Swiss Consumers.
    Yang Meier D; Barthelmess P; Sun W; Liberatore F
    J Med Internet Res; 2020 Oct; 22(10):e18801. PubMed ID: 33090108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patients' Intention to Adopt Fintech Services: A Study on Bangladesh Healthcare Sector.
    Hassan MS; Islam MA; Sobhani FA; Hassan MM; Hassan MA
    Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36430018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.