These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 36148303)
1. Self-supervised neural network improves tri-exponential intravoxel incoherent motion model fitting compared to least-squares fitting in non-alcoholic fatty liver disease. Troelstra MA; Van Dijk AM; Witjes JJ; Mak AL; Zwirs D; Runge JH; Verheij J; Beuers UH; Nieuwdorp M; Holleboom AG; Nederveen AJ; Gurney-Champion OJ Front Physiol; 2022; 13():942495. PubMed ID: 36148303 [TBL] [Abstract][Full Text] [Related]
2. An Unsupervised Deep Learning Approach for Dynamic-Exponential Intravoxel Incoherent Motion MRI Modeling and Parameter Estimation in the Liver. Zhou XX; Wang XY; Liu EH; Zhang L; Zhang HX; Zhang XS; Zhu YM; Kuai ZX J Magn Reson Imaging; 2022 Sep; 56(3):848-859. PubMed ID: 35064945 [TBL] [Abstract][Full Text] [Related]
3. Bayesian intravoxel incoherent motion parameter mapping in the human heart. Spinner GR; von Deuster C; Tezcan KC; Stoeck CT; Kozerke S J Cardiovasc Magn Reson; 2017 Nov; 19(1):85. PubMed ID: 29110717 [TBL] [Abstract][Full Text] [Related]
4. Intravoxel incoherent motion diffusion-weighted imaging in the liver: comparison of mono-, bi- and tri-exponential modelling at 3.0-T. Cercueil JP; Petit JM; Nougaret S; Soyer P; Fohlen A; Pierredon-Foulongne MA; Schembri V; Delhom E; Schmidt S; Denys A; Aho S; Guiu B Eur Radiol; 2015 Jun; 25(6):1541-50. PubMed ID: 25527431 [TBL] [Abstract][Full Text] [Related]
5. Comparison of tri-exponential decay versus bi-exponential decay and full fitting versus segmented fitting for modeling liver intravoxel incoherent motion diffusion MRI. Chevallier O; Zhou N; Cercueil JP; He J; Loffroy R; Wáng YXJ NMR Biomed; 2019 Nov; 32(11):e4155. PubMed ID: 31361366 [TBL] [Abstract][Full Text] [Related]
6. Improving microstructural integrity, interstitial fluid, and blood microcirculation images from multi-b-value diffusion MRI using physics-informed neural networks in cerebrovascular disease. Voorter PHM; Backes WH; Gurney-Champion OJ; Wong SM; Staals J; van Oostenbrugge RJ; van der Thiel MM; Jansen JFA; Drenthen GS Magn Reson Med; 2023 Oct; 90(4):1657-1671. PubMed ID: 37317641 [TBL] [Abstract][Full Text] [Related]
7. Deep learning intravoxel incoherent motion modeling: Exploring the impact of training features and learning strategies. Kaandorp MPT; Zijlstra F; Federau C; While PT Magn Reson Med; 2023 Jul; 90(1):312-328. PubMed ID: 36912473 [TBL] [Abstract][Full Text] [Related]
8. Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients. Kaandorp MPT; Barbieri S; Klaassen R; van Laarhoven HWM; Crezee H; While PT; Nederveen AJ; Gurney-Champion OJ Magn Reson Med; 2021 Oct; 86(4):2250-2265. PubMed ID: 34105184 [TBL] [Abstract][Full Text] [Related]
9. Synthetic-to-real domain adaptation with deep learning for fitting the intravoxel incoherent motion model of diffusion-weighted imaging. Huang H; Liu B; Xu Y; Zhou W Med Phys; 2023 Mar; 50(3):1614-1622. PubMed ID: 36308503 [TBL] [Abstract][Full Text] [Related]
10. Accurate intravoxel incoherent motion parameter estimation using Bayesian fitting and reduced number of low b-values. Ye C; Xu D; Qin Y; Wang L; Wang R; Li W; Kuai Z; Zhu Y Med Phys; 2020 Sep; 47(9):4372-4385. PubMed ID: 32403175 [TBL] [Abstract][Full Text] [Related]
11. Statistical assessment of bi-exponential diffusion weighted imaging signal characteristics induced by intravoxel incoherent motion in malignant breast tumors. Yuan J; Wong OL; Lo GG; Chan HH; Wong TT; Cheung PS Quant Imaging Med Surg; 2016 Aug; 6(4):418-429. PubMed ID: 27709078 [TBL] [Abstract][Full Text] [Related]
12. Precision of region of interest-based tri-exponential intravoxel incoherent motion quantification and the role of the Intervoxel spatial distribution of flow velocities. Simchick G; Hernando D Magn Reson Med; 2022 Dec; 88(6):2662-2678. PubMed ID: 35968580 [TBL] [Abstract][Full Text] [Related]
13. A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI. While PT Magn Reson Med; 2017 Dec; 78(6):2373-2387. PubMed ID: 28370232 [TBL] [Abstract][Full Text] [Related]
14. Evidence of Tri-Exponential Decay for Liver Intravoxel Incoherent Motion MRI: A Review of Published Results and Limitations. Chevallier O; Wáng YXJ; Guillen K; Pellegrinelli J; Cercueil JP; Loffroy R Diagnostics (Basel); 2021 Feb; 11(2):. PubMed ID: 33672277 [TBL] [Abstract][Full Text] [Related]
15. Intravoxel Incoherent Motion Model in Differentiating the Pathological Grades of Esophageal Carcinoma: Comparison of Mono-Exponential and Bi-Exponential Fit Model. Liu N; Yang X; Lei L; Pan K; Liu Q; Huang X Front Oncol; 2021; 11():625891. PubMed ID: 33912449 [TBL] [Abstract][Full Text] [Related]
16. Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI. Barbieri S; Gurney-Champion OJ; Klaassen R; Thoeny HC Magn Reson Med; 2020 Jan; 83(1):312-321. PubMed ID: 31389081 [TBL] [Abstract][Full Text] [Related]
18. Stroke assessment with intravoxel incoherent motion diffusion-weighted MRI. Suo S; Cao M; Zhu W; Li L; Li J; Shen F; Zu J; Zhou Z; Zhuang Z; Qu J; Chen Z; Xu J NMR Biomed; 2016 Mar; 29(3):320-8. PubMed ID: 26748572 [TBL] [Abstract][Full Text] [Related]
19. The Feasibility of Using Tri-Exponential Intra-Voxel Incoherent Motion DWI for Identifying the Microvascular Invasion in Hepatocellular Carcinoma. Zhang Y; Sheng R; Yang C; Dai Y; Zeng M J Hepatocell Carcinoma; 2023; 10():1659-1671. PubMed ID: 37799828 [TBL] [Abstract][Full Text] [Related]