These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36148800)

  • 1. Dioxygen Activation and N
    Wang Y; Dong L; Su H; Liu Y
    Inorg Chem; 2022 Oct; 61(39):15721-15734. PubMed ID: 36148800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Study of the C5-Hydroxylation Mechanism Catalyzed by the Diiron Monooxygenase PtmU3 as Part of the Platensimycin Biosynthesis.
    Zhang S; Li X; Wang Y; Yan L; Wei J; Liu Y
    Inorg Chem; 2021 Dec; 60(23):17783-17796. PubMed ID: 34762413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Peroxodiiron(III/III) Intermediate Mediating Both
    McBride MJ; Sil D; Ng TL; Crooke AM; Kenney GE; Tysoe CR; Zhang B; Balskus EP; Boal AK; Krebs C; Bollinger JM
    J Am Chem Soc; 2020 Jul; 142(27):11818-11828. PubMed ID: 32511919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and assembly of the diiron cofactor in the heme-oxygenase-like domain of the
    McBride MJ; Pope SR; Hu K; Okafor CD; Balskus EP; Bollinger JM; Boal AK
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33468680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic mononuclear nonheme iron-oxygen intermediates.
    Nam W
    Acc Chem Res; 2015 Aug; 48(8):2415-23. PubMed ID: 26203519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-Nitrosation Mechanism Catalyzed by Non-heme Iron-Containing Enzyme SznF Involving Intramolecular Oxidative Rearrangement.
    Wang J; Wang X; Ouyang Q; Liu W; Shan J; Tan H; Li X; Chen G
    Inorg Chem; 2021 Jun; 60(11):7719-7731. PubMed ID: 34004115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Insights into the N-Hydroxylations Catalyzed by the Binuclear Iron Domain of SznF Enzyme: Key Piece in the Synthesis of Streptozotocin.
    Li RN; Chen SL
    Chemistry; 2024 Mar; 30(16):e202303845. PubMed ID: 38212866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Study of Aromatic Hydroxylation Catalyzed by the Iron-Dependent Hydroxylase PqqB Involved in the Biosynthesis of Redox Cofactor Pyrroloquinoline Quinone.
    Liu Y; Liu Y
    Inorg Chem; 2022 Apr; 61(15):5943-5956. PubMed ID: 35362953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes.
    Jasniewski AJ; Que L
    Chem Rev; 2018 Mar; 118(5):2554-2592. PubMed ID: 29400961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.
    Oloo WN; Que L
    Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates.
    Ansari A; Kaushik A; Rajaraman G
    J Am Chem Soc; 2013 Mar; 135(11):4235-49. PubMed ID: 23373840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of a μ-1,2-hydroperoxo Fe
    Walleck S; Zimmermann TP; Hachmeister H; Pilger C; Huser T; Katz S; Hildebrandt P; Stammler A; Bögge H; Bill E; Glaser T
    Nat Commun; 2022 Mar; 13(1):1376. PubMed ID: 35296656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonheme Diiron Oxygenase Mimic That Generates a Diferric-Peroxo Intermediate Capable of Catalytic Olefin Epoxidation and Alkane Hydroxylation Including Cyclohexane.
    Oloo WN; Szávuly M; Kaizer J; Que L
    Inorg Chem; 2022 Jan; 61(1):37-41. PubMed ID: 34894683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C(sp
    Lu J; Lai W; Chen H
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202211843. PubMed ID: 36087023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the origin of million-fold reactivity observed for the open core diiron [HO-Fe
    Ansari M; Senthilnathan D; Rajaraman G
    Chem Sci; 2020 Oct; 11(39):10669-10687. PubMed ID: 33209248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protonation of a peroxodiiron(III) complex and conversion to a diiron(III/IV) intermediate: implications for proton-assisted O-O bond cleavage in nonheme diiron enzymes.
    Cranswick MA; Meier KK; Shan X; Stubna A; Kaizer J; Mehn MP; Münck E; Que L
    Inorg Chem; 2012 Oct; 51(19):10417-26. PubMed ID: 22971084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-triggered activation of a synthetic [Fe2(μ-O)2] diamond core for C-H bond cleavage.
    Xue G; Pokutsa A; Que L
    J Am Chem Soc; 2011 Oct; 133(41):16657-67. PubMed ID: 21899336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathways for Arene Oxidation in Non-Heme Diiron Enzymes: Lessons from Computational Studies on Benzoyl Coenzyme A Epoxidase.
    Rokob TA
    J Am Chem Soc; 2016 Nov; 138(44):14623-14638. PubMed ID: 27682344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of Dioxygen by a Mononuclear Nonheme Iron Complex: Sequential Peroxo, Oxo, and Hydroxo Intermediates.
    Gordon JB; Vilbert AC; DiMucci IM; MacMillan SN; Lancaster KM; Moënne-Loccoz P; Goldberg DP
    J Am Chem Soc; 2019 Nov; 141(44):17533-17547. PubMed ID: 31647656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study of the mechanism of alkane hydroxylation and ethylene epoxidation reactions catalyzed by diiron bis-oxo complexes. The effect of substrate molecules.
    Musaev DG; Basch H; Morokuma K
    J Am Chem Soc; 2002 Apr; 124(15):4135-48. PubMed ID: 11942853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.