These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36148852)

  • 1. Nature-Inspired High Temperature Scale-Resistant Slippery Lubricant-Induced Porous Surfaces (HTS-SLIPS).
    Yao X; Lin W; Wang M; Wang S
    Small; 2022 Nov; 18(46):e2203615. PubMed ID: 36148852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Slippery Lubricant-Infused Porous Surface for Inhibition of Microbially Influenced Corrosion.
    Wang P; Zhang D; Lu Z; Sun S
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1120-7. PubMed ID: 26619002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Effects of Lubricant Infusion Methods on Polymer SLIPS.
    Casey M; Dano F; Busch T; Aboud DGK; Kietzig AM
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):37328-37337. PubMed ID: 38954598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slippery liquid-infused porous surface (SLIPS) with super-repellent and contact-killing antimicrobial performances.
    Zhang B; Zhang Y; Ma S; Zhang H
    Colloids Surf B Biointerfaces; 2022 Dec; 220():112878. PubMed ID: 36215899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Step Fabrication of Bioinspired Lubricant-Regenerable Icephobic Slippery Liquid-Infused Porous Surfaces.
    Zhuo Y; Wang F; Xiao S; He J; Zhang Z
    ACS Omega; 2018 Aug; 3(8):10139-10144. PubMed ID: 31459142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances of slippery liquid-infused porous surfaces with anti-corrosion.
    Yan W; Xue S; Bin Xiang ; Zhao X; Zhang W; Mu P; Li J
    Chem Commun (Camb); 2023 Feb; 59(16):2182-2198. PubMed ID: 36723187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Slippery Lubricant-Infused Porous Surface with High Underwater Transparency for the Control of Marine Biofouling.
    Wang P; Zhang D; Sun S; Li T; Sun Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):972-982. PubMed ID: 27992173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity.
    Wong TS; Kang SH; Tang SK; Smythe EJ; Hatton BD; Grinthal A; Aizenberg J
    Nature; 2011 Sep; 477(7365):443-7. PubMed ID: 21938066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling Up Nature: Large Area Flexible Biomimetic Surfaces.
    Li Y; John J; Kolewe KW; Schiffman JD; Carter KR
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23439-44. PubMed ID: 26423494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WO
    Wang C; Yan Y; Du D; Xiong X; Ma Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29767-29777. PubMed ID: 32510196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slippery Porous-Liquid-Infused Porous Surface (SPIPS) with On-Demand Responsive Switching between "Defensive" and "Offensive" Antifouling Modes.
    Tong Z; Gao F; Chen S; Song L; Hu J; Hou Y; Lu J; Leung MKH; Zhan X; Zhang Q
    Adv Mater; 2024 Mar; 36(9):e2308972. PubMed ID: 37917884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extreme Antiscaling Performance of Slippery Omniphobic Covalently Attached Liquids.
    Zhao H; Deshpande CA; Li L; Yan X; Hoque MJ; Kuntumalla G; Rajagopal MC; Chang HC; Meng Y; Sundar S; Ferreira P; Shao C; Salapaka S; Sinha S; Miljkovic N
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12054-12067. PubMed ID: 32045210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison between superhydrophobic surfaces (SHS) and slippery liquid-infused porous surfaces (SLIPS) in application.
    Wang C; Guo Z
    Nanoscale; 2020 Nov; 12(44):22398-22424. PubMed ID: 33174577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing a MOF-based slippery lubricant-infused porous surface with dual functional anti-fouling strategy.
    Li H; Yan M; Zhao W
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1424-1435. PubMed ID: 34583045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slippery liquid-infused porous surfaces with inclined microstructures to enhance durable anti-biofouling performances.
    Cai G; Liu F; Wu T
    Colloids Surf B Biointerfaces; 2021 Jun; 202():111667. PubMed ID: 33706164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key Factors Affecting Durable Anti-Icing of Slippery Surfaces: Pore Size and Porosity.
    Xiang H; Yuan Y; Zhang C; Dai X; Zhu T; Song L; Gai Y; Liao R
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3599-3612. PubMed ID: 36579670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water Drop Evaporation on Slippery Liquid-Infused Porous Surfaces (SLIPS): Effect of Lubricant Thickness, Viscosity, Ridge Height, and Pattern Geometry.
    Üçüncüoğlu R; Erbil HY
    Langmuir; 2023 May; 39(18):6514-6528. PubMed ID: 37103333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-Icing Mechanism for a Novel Slippery Aluminum Stranded Conductor.
    Xiang H; Yuan Y; Zhu T; Dai X; Zhang C; Gai Y; Liao R
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34215-34229. PubMed ID: 37413794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Developments in Slippery Liquid-Infused Porous Surface Coatings for Biomedical Applications.
    Jia Y; Yang Y; Cai X; Zhang H
    ACS Biomater Sci Eng; 2024 Jun; 10(6):3655-3672. PubMed ID: 38743527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetting ridges on slippery liquid-infused porous surfaces.
    Tran HH; Lee D; Riassetto D
    Rep Prog Phys; 2023 May; 86(6):. PubMed ID: 36990071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.