These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36149006)

  • 21. A simple paper-based sensor fabricated by selective wet etching of silanized filter paper using a paper mask.
    Cai L; Xu C; Lin S; Luo J; Wu M; Yang F
    Biomicrofluidics; 2014 Sep; 8(5):056504. PubMed ID: 25584119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ion-Exchange Based Immobilization of Chromogenic Reagents on Microfluidic Paper Analytical Devices.
    Rahbar M; Wheeler AR; Paull B; Macka M
    Anal Chem; 2019 Jul; 91(14):8756-8761. PubMed ID: 31251584
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique.
    Wu P; Zhang C
    Lab Chip; 2015 Mar; 15(6):1598-608. PubMed ID: 25656508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative analytical study on reagent-fused silica gel plate and wax painted paper-based microfluidic device for serological testing.
    Krishna R; Anil EM
    Forensic Sci Int; 2020 Dec; 317():110517. PubMed ID: 32979844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dry storage of multiple reagent types within a paper microfluidic device for phenylalanine monitoring.
    Wentland L; Polaski R; Fu E
    Anal Methods; 2021 Feb; 13(5):660-671. PubMed ID: 33463631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of Three-dimensional Paper-based Microfluidic Devices for Immunoassays.
    Fernandes SC; Wilson DJ; Mace CR
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sweat test for cystic fibrosis: Wearable sweat sensor vs. standard laboratory test.
    Choi DH; Thaxton A; Jeong IC; Kim K; Sosnay PR; Cutting GR; Searson PC
    J Cyst Fibros; 2018 Jul; 17(4):e35-e38. PubMed ID: 29580829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly sensitive distance-based liquid crystalline visualization for paper-based analytical devices.
    Khachornsakkul K; Chang JJ; Lin PH; Lin YH; Dungchai W; Chen CH
    Anal Chim Acta; 2021 Apr; 1154():338328. PubMed ID: 33736795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-coalescing flows in microfluidics for pulse-shaped delivery of reagents.
    Gökçe O; Castonguay S; Temiz Y; Gervais T; Delamarche E
    Nature; 2019 Oct; 574(7777):228-232. PubMed ID: 31597972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Equipment-Free Detection of K
    Soda Y; Citterio D; Bakker E
    ACS Sens; 2019 Mar; 4(3):670-677. PubMed ID: 30702271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Citrate-based fluorescent materials for low-cost chloride sensing in the diagnosis of Cystic Fibrosis.
    Kim JP; Xie Z; Creer M; Liu Z; Yang J
    Chem Sci; 2017 Jan; 8(1):550-558. PubMed ID: 28348728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Capacitive platform for real-time wireless monitoring of liquid wicking in a paper strip.
    Ruiz-García I; Escobedo P; Ramos-Lorente CE; Erenas MM; Capitán-Vallvey LF; Carvajal MA; Palma AJ; López-Ruiz N
    Lab Chip; 2023 Sep; 23(18):4092-4103. PubMed ID: 37615614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hemp-Based Microfluidics.
    Temirel M; Dabbagh SR; Tasoglu S
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33673025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Semi-enclosed paper sensor for highly sensitive and selective detection of proline.
    Santhosh M; Park T
    Anal Chim Acta; 2022 Oct; 1231():340399. PubMed ID: 36220289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Concept of Chemical Generators: On-Site On-Demand Production of Hazardous Reagents in Continuous Flow.
    Dallinger D; Gutmann B; Kappe CO
    Acc Chem Res; 2020 Jul; 53(7):1330-1341. PubMed ID: 32543830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. THE SILVER ELECTRODE METHOD FOR RAPID ANALYSIS OF SWEAT CHLORIDE.
    WARWICK WJ; HANSEN L
    Pediatrics; 1965 Aug; 36():261-4. PubMed ID: 14320037
    [No Abstract]   [Full Text] [Related]  

  • 38. [Sweat chloride measurement using direct potentiometry: Spotchem(®) (Elitech-Arkray) evaluation and comparison with coulometry and conductivity].
    Nguyen-Khoa T; Borgard JP; Miled R; Rota M
    Ann Biol Clin (Paris); 2013; 71(4):443-8. PubMed ID: 23906572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid, Simple and Inexpensive Fabrication of Paper-Based Analytical Devices by Parafilm
    Kasetsirikul S; Clack K; Shiddiky MJA; Nguyen NT
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wearable Analytical Platform with Enzyme-Modulated Dynamic Range for the Simultaneous Colorimetric Detection of Sweat Volume and Sweat Biomarkers.
    Vaquer A; Barón E; de la Rica R
    ACS Sens; 2021 Jan; 6(1):130-136. PubMed ID: 33371672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.