These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36149259)

  • 1. Artificial Light-Harvesting System with White-Light Emission in a Bicontinuous Ionic Medium.
    Zhang G; Yu L; Chen J; Dong R; Godbert N; Li H; Hao J
    J Phys Chem Lett; 2022 Oct; 13(39):8999-9006. PubMed ID: 36149259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new strategy for constructing artificial light-harvesting systems: supramolecular self-assembly gels with AIE properties.
    Ma X; Yue J; Wang Y; Gao Y; Qiao B; Feng E; Li Z; Ye F; Han X
    Soft Matter; 2021 Jun; 17(23):5666-5670. PubMed ID: 34095929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A highly selective ratiometric fluorescent pH probe based on a PAMAM wavelength-shifting bichromophoric system.
    Alamry KA; Georgiev NI; El-Daly SA; Taib LA; Bojinov VB
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():792-800. PubMed ID: 25150429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-step cascaded artificial light-harvesting systems with tunable efficiency based on metallacycles.
    Zhang D; Li M; Jiang B; Liu S; Yang J; Yang X; Ma K; Yuan X; Yi T
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1494-1502. PubMed ID: 37659317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-Free Estimation of Energy-Transfer Timescales in a Closely Emitting CdSe/ZnS Quantum Dot and Rhodamine 6G FRET Couple.
    Bharadwaj K; Koley S; Jana S; Ghosh S
    Chem Asian J; 2018 Nov; 13(21):3296-3303. PubMed ID: 30178522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of conventional FRET and light harvesting properties of Rh-110/Rh-6G and Rh-19/Rh-B organic dye pairs impregnated in sol-gel glasses.
    Mahato KD; Kumar U
    Methods Appl Fluoresc; 2023 May; 11(3):. PubMed ID: 37094579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating energy transfer in copolymer-based nanocomposites by their controlled nanocaging and release of an ionic styryl dye: a case of an ultrasensitive pH sensor.
    Manna A; Sahoo D; Chakravorti S
    J Phys Chem B; 2012 Mar; 116(8):2464-71. PubMed ID: 22303919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the Förster Resonance Energy Transfer through a Self-Assembly Approach for Efficient White-Light Emission in an Aqueous Medium.
    Pallavi P; Sk B; Ahir P; Patra A
    Chemistry; 2018 Jan; 24(5):1151-1158. PubMed ID: 29136298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Light-Harvesting Systems with Tunable Emission through Controlled Precipitation in Confined Nanospace.
    Li C; Zhang J; Zhang S; Zhao Y
    Angew Chem Int Ed Engl; 2019 Feb; 58(6):1643-1647. PubMed ID: 30418700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Förster Resonance Energy Transfer: Efficient Light Harvesting for Sequential Photo-Thermo-Electric Conversion.
    Fu K; Zeng X; Zhao X; Wu Y; Li M; Li XS; Pan C; Chen Z; Yu ZQ
    Small; 2021 Oct; 17(39):e2103172. PubMed ID: 34310041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of Artificial Light-Harvesting Systems Based on Aggregation-Induced Emission Type Supramolecular Self-Assembly Metallogels.
    Wang Y; Lai Y; Ren T; Tang J; Gao Y; Geng Y; Zhang J; Ma X
    Langmuir; 2023 Jan; ():. PubMed ID: 36625456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Step and Switchable Energy Transfer in Photoluminescent Organosilicone Capsules.
    Yu L; Liu H; Feng N; Yi G; Xin X; Hao J; Li H
    Adv Sci (Weinh); 2024 Jun; ():e2402565. PubMed ID: 38894600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence resonance energy transfer in microemulsions composed of tripled-chain surface active ionic liquids, RTILs, and biological solvent: an excitation wavelength dependence study.
    Banerjee C; Kundu N; Ghosh S; Mandal S; Kuchlyan J; Sarkar N
    J Phys Chem B; 2013 Aug; 117(32):9508-17. PubMed ID: 23865472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dye encapsulation engineering in a tetraphenylethylene-based MOF for tunable white-light emission.
    Xing W; Zhou H; Han J; Zhou Y; Gan N; Cuan J
    J Colloid Interface Sci; 2021 Dec; 604():568-574. PubMed ID: 34274718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new strategy to construct a FRET platform for ratiometric sensing of hydrogen sulfide.
    He L; Lin W; Xu Q; Wei H
    Chem Commun (Camb); 2015 Jan; 51(8):1510-3. PubMed ID: 25502568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular polymers based on host-guest interactions for the construction of artificial light-harvesting systems.
    Wang Y; Xu J; Wang R; Liu H; Yu S; Xing LB
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121402. PubMed ID: 35636137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy Transfer between Conjugated Colloidal Ga₂O₃ and CdSe/CdS Core/Shell Nanocrystals for White Light Emitting Applications.
    Stanish PC; Radovanovic PV
    Nanomaterials (Basel); 2016 Feb; 6(2):. PubMed ID: 28344289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [2,2] Paracyclophanes-based double helicates for constructing artificial light-harvesting systems and white LED device.
    Lian Z; He J; Liu L; Fan Y; Chen X; Jiang H
    Nat Commun; 2023 May; 14(1):2752. PubMed ID: 37173318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smartphone-assisted detection of nucleic acids by light-harvesting FRET-based nanoprobe.
    Severi C; Melnychuk N; Klymchenko AS
    Biosens Bioelectron; 2020 Nov; 168():112515. PubMed ID: 32862092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and fluorescence properties of two dendritic molecules based on naphthalimide and triphenylamine.
    Cheng HR; Zhou ZY; Zhang X; Wang S; Qian C
    Luminescence; 2021 Mar; 36(2):377-383. PubMed ID: 32978869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.