These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Evaluating the cytotoxicity of a large pool of metal oxide nanoparticles to Escherichia coli: Mechanistic understanding through In Vitro and In Silico studies. Kar S; Pathakoti K; Tchounwou PB; Leszczynska D; Leszczynski J Chemosphere; 2021 Feb; 264(Pt 1):128428. PubMed ID: 33022504 [TBL] [Abstract][Full Text] [Related]
3. Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach. Kar S; Gajewicz A; Puzyn T; Roy K; Leszczynski J Ecotoxicol Environ Saf; 2014 Sep; 107():162-9. PubMed ID: 24949897 [TBL] [Abstract][Full Text] [Related]
4. Modeling and mechanistic understanding of cytotoxicity of metal oxide nanoparticles (MeOxNPs) to Roy J; Roy K Nanotoxicology; 2022 Mar; 16(2):152-164. PubMed ID: 35166631 [TBL] [Abstract][Full Text] [Related]
5. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. Pathakoti K; Huang MJ; Watts JD; He X; Hwang HM J Photochem Photobiol B; 2014 Jan; 130():234-40. PubMed ID: 24362319 [TBL] [Abstract][Full Text] [Related]
6. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. Li J; Wang C; Yue L; Chen F; Cao X; Wang Z Ecotoxicol Environ Saf; 2022 Sep; 243():113955. PubMed ID: 35961199 [TBL] [Abstract][Full Text] [Related]
7. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions. Toropova AP; Toropov AA; Rallo R; Leszczynska D; Leszczynski J Ecotoxicol Environ Saf; 2015 Feb; 112():39-45. PubMed ID: 25463851 [TBL] [Abstract][Full Text] [Related]
8. Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles. Kar S; Yang S Beilstein J Nanotechnol; 2024; 15():1142-1152. PubMed ID: 39290525 [TBL] [Abstract][Full Text] [Related]
9. Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles. Zhang F; Wang Z; Peijnenburg WJGM; Vijver MG Environ Int; 2023 Jul; 177():108025. PubMed ID: 37329761 [TBL] [Abstract][Full Text] [Related]
10. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Puzyn T; Rasulev B; Gajewicz A; Hu X; Dasari TP; Michalkova A; Hwang HM; Toropov A; Leszczynska D; Leszczynski J Nat Nanotechnol; 2011 Mar; 6(3):175-8. PubMed ID: 21317892 [TBL] [Abstract][Full Text] [Related]
11. Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Mu Y; Wu F; Zhao Q; Ji R; Qie Y; Zhou Y; Hu Y; Pang C; Hristozov D; Giesy JP; Xing B Nanotoxicology; 2016 Nov; 10(9):1207-14. PubMed ID: 27309010 [TBL] [Abstract][Full Text] [Related]
12. The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method. Fjodorova N; Novic M; Gajewicz A; Rasulev B Nanotoxicology; 2017 May; 11(4):475-483. PubMed ID: 28330416 [TBL] [Abstract][Full Text] [Related]
13. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Sizochenko N; Rasulev B; Gajewicz A; Kuz'min V; Puzyn T; Leszczynski J Nanoscale; 2014 Nov; 6(22):13986-93. PubMed ID: 25317542 [TBL] [Abstract][Full Text] [Related]
14. Toxicity of Metal Oxide Nanoparticles: Looking through the Lens of Toxicogenomics. Boyadzhiev A; Wu D; Avramescu ML; Williams A; Rasmussen P; Halappanavar S Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203705 [TBL] [Abstract][Full Text] [Related]
15. Predicting the toxicities of metal oxide nanoparticles based on support vector regression with a residual bootstrapping method. Zhai X; Chen M; Lu W Toxicol Mech Methods; 2018 Jul; 28(6):440-449. PubMed ID: 29644916 [TBL] [Abstract][Full Text] [Related]
16. Extrapolating between toxicity endpoints of metal oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR. Kar S; Gajewicz A; Roy K; Leszczynski J; Puzyn T Ecotoxicol Environ Saf; 2016 Apr; 126():238-244. PubMed ID: 26773833 [TBL] [Abstract][Full Text] [Related]
17. Understanding mechanism governing the inflammatory potential of metal oxide nanoparticles using periodic table-based descriptors: a nano-QSAR approach. Roy J; Roy K SAR QSAR Environ Res; 2023; 34(6):459-474. PubMed ID: 37350771 [TBL] [Abstract][Full Text] [Related]
18. Comparative toxicity assessment of individual, binary and ternary mixtures of SiO Das S; Giri S; Jose SA; Pulimi M; Anand S; Chandrasekaran N; Rai PK; Mukherjee A Comp Biochem Physiol C Toxicol Pharmacol; 2023 Nov; 273():109718. PubMed ID: 37591457 [TBL] [Abstract][Full Text] [Related]
19. Use of metal/metal oxide spherical cluster and hydroxyl metal coordination complex for descriptor calculation in development of nanoparticle cytotoxicity classification model. Shin HK; Kim KY; Park JW; No KT SAR QSAR Environ Res; 2017 Nov; 28(11):875-888. PubMed ID: 29189078 [TBL] [Abstract][Full Text] [Related]
20. The nanotechnology among US: are metal and metal oxides nanoparticles a nano or mega risk for soil microbial communities? Parada J; Rubilar O; Fernández-Baldo MA; Bertolino FA; Durán N; Seabra AB; Tortella GR Crit Rev Biotechnol; 2019 Mar; 39(2):157-172. PubMed ID: 30396282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]