These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36150002)

  • 1. Inertial Measurement Unit-Assisted Ultrasonic Tracking System for Ultrasound Probe Localization.
    Cai Q; Hu J; Chen M; Prieto J; Rosenbaum AJ; Stringer JSA; Jiang X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Sep; 70(9):920-929. PubMed ID: 36150002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Evaluation of Sensor Fusion of Low-Cost UWB and IMU for Localization under Indoor Dynamic Testing Conditions.
    Liu C; Kadja T; Chodavarapu VP
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile Low-Cost Volumetric 3D Ultrasound Imaging Using Gimbal-Assisted Distance Sensors and an Inertial Measurement Unit.
    Kim T; Kang DH; Shim S; Im M; Seo BK; Kim H; Lee BC
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33227915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrastructure-Free Indoor Pedestrian Tracking with Smartphone Acoustic-Based Enhancement.
    Liu C; Jiang S; Zhao S; Guo Z
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31146403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Ray Modeling of Ultrasonic Sensors and Application for Micro-UAV Localization in Indoor Environments.
    Yang L; Feng X; Zhang J; Shu X
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indoor pedestrian navigation using foot-mounted IMU and portable ultrasound range sensors.
    Girard G; Cรดtรฉ S; Zlatanova S; Barette Y; St-Pierre J; van Oosterom P
    Sensors (Basel); 2011; 11(8):7606-24. PubMed ID: 22164034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial Measurements for Tongue Motion Tracking Based on Magnetic Localization with Orientation Compensation.
    Sebkhi N; Bhavsar A; Anderson DV; Wang J; Inan OT
    IEEE Sens J; 2021 Mar; 21(6):7964-7971. PubMed ID: 33746627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost-Effective Wearable Indoor Localization and Motion Analysis via the Integration of UWB and IMU.
    Zhang H; Zhang Z; Gao N; Xiao Y; Meng Z; Li Z
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Obtaining wheelchair kinematics with one sensor only? The trade-off between number of inertial sensors and accuracy for measuring wheelchair mobility performance in sports.
    van Dijk MP; van der Slikke RMA; Rupf R; Hoozemans MJM; Berger MAM; Veeger DHEJ
    J Biomech; 2022 Jan; 130():110879. PubMed ID: 34871895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Neural Network Approach to Guarantee the Positioning Accuracy of Moving Robots by Using the Integration of IMU/UWB with Motion Capture System Data Fusion.
    Almassri AMM; Shirasawa N; Purev A; Uehara K; Oshiumi W; Mishima S; Wagatsuma H
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation.
    He C; Kazanzides P; Sen HT; Kim S; Liu Y
    Sensors (Basel); 2015 Jul; 15(7):16448-65. PubMed ID: 26184191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance Enhancement of Pedestrian Navigation Systems Based on Low-Cost Foot-Mounted MEMS-IMU/Ultrasonic Sensor.
    Xia M; Xiu C; Yang D; Wang L
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Kalman filter for indoor localization using Bluetooth Low Energy and inertial measurement unit.
    Yoon PK; Zihajehzadeh S; Bong-Soo Kang ; Park EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():825-8. PubMed ID: 26736389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sensor fusion method for tracking vertical velocity and height based on inertial and barometric altimeter measurements.
    Sabatini AM; Genovese V
    Sensors (Basel); 2014 Jul; 14(8):13324-47. PubMed ID: 25061835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Person Tracking in Ultra-Wide Band Hybrid Localization System Using Reduced Number of Reference Nodes.
    Rajchowski P; Stefanski J; Sadowski J; Cwalina KK
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32252269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving low-cost inertial-measurement-unit (IMU)-based motion tracking accuracy for a biomorphic hyper-redundant snake robot.
    Yang W; Bajenov A; Shen Y
    Robotics Biomim; 2017; 4(1):16. PubMed ID: 29170730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Low-Cost Foot-Placed UWB and IMU Fusion-Based Indoor Pedestrian Tracking System for IoT Applications.
    Naheem K; Kim MS
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inertial measurement unit tracking system for body movement in comparison with optical tracking.
    Li R; Jumet B; Ren H; Song W; Tse ZTH
    Proc Inst Mech Eng H; 2020 Jul; 234(7):728-737. PubMed ID: 32419605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Walking-speed estimation using a single inertial measurement unit for the older adults.
    Byun S; Lee HJ; Han JW; Kim JS; Choi E; Kim KW
    PLoS One; 2019; 14(12):e0227075. PubMed ID: 31877181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.