These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1626 related articles for article (PubMed ID: 36150046)

  • 1. Emotions and Topics Expressed on Twitter During the COVID-19 Pandemic in the United Kingdom: Comparative Geolocation and Text Mining Analysis.
    Alhuzali H; Zhang T; Ananiadou S
    J Med Internet Res; 2022 Oct; 24(10):e40323. PubMed ID: 36150046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. COVID-19 Vaccine-Related Discussion on Twitter: Topic Modeling and Sentiment Analysis.
    Lyu JC; Han EL; Luli GK
    J Med Internet Res; 2021 Jun; 23(6):e24435. PubMed ID: 34115608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Concerns, Sentiments, and Disparities Among Population Groups During the COVID-19 Pandemic Via Twitter Data Mining: Large-scale Cross-sectional Study.
    Zhang C; Xu S; Li Z; Hu S
    J Med Internet Res; 2021 Mar; 23(3):e26482. PubMed ID: 33617460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Twitter Comments to Understand People's Experiences of UK Health Care During the COVID-19 Pandemic: Thematic and Sentiment Analysis.
    Ainley E; Witwicki C; Tallett A; Graham C
    J Med Internet Res; 2021 Oct; 23(10):e31101. PubMed ID: 34469327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study.
    Chandrasekaran R; Mehta V; Valkunde T; Moustakas E
    J Med Internet Res; 2020 Oct; 22(10):e22624. PubMed ID: 33006937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling public perceptions at the beginning of lockdown: an application of structural topic modeling and sentiment analysis in the UK and India.
    Kang X; Stamolampros P
    BMC Public Health; 2024 Oct; 24(1):2832. PubMed ID: 39407148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twitter Discussions and Emotions About the COVID-19 Pandemic: Machine Learning Approach.
    Xue J; Chen J; Hu R; Chen C; Zheng C; Su Y; Zhu T
    J Med Internet Res; 2020 Nov; 22(11):e20550. PubMed ID: 33119535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examining Rural and Urban Sentiment Difference in COVID-19-Related Topics on Twitter: Word Embedding-Based Retrospective Study.
    Liu Y; Yin Z; Ni C; Yan C; Wan Z; Malin B
    J Med Internet Res; 2023 Feb; 25():e42985. PubMed ID: 36790847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tweet Topics and Sentiments Relating to COVID-19 Vaccination Among Australian Twitter Users: Machine Learning Analysis.
    Kwok SWH; Vadde SK; Wang G
    J Med Internet Res; 2021 May; 23(5):e26953. PubMed ID: 33886492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topics and Sentiments of Public Concerns Regarding COVID-19 Vaccines: Social Media Trend Analysis.
    Monselise M; Chang CH; Ferreira G; Yang R; Yang CC
    J Med Internet Res; 2021 Oct; 23(10):e30765. PubMed ID: 34581682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking Public Attitudes Toward COVID-19 Vaccination on Tweets in Canada: Using Aspect-Based Sentiment Analysis.
    Jang H; Rempel E; Roe I; Adu P; Carenini G; Janjua NZ
    J Med Internet Res; 2022 Mar; 24(3):e35016. PubMed ID: 35275835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the Role of Nutrition in Enhancing Immunity During the COVID-19 Pandemic: Twitter Text-Mining Analysis.
    Shankar K; Chandrasekaran R; Jeripity Venkata P; Miketinas D
    J Med Internet Res; 2023 Jul; 25():e47328. PubMed ID: 37428522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial Intelligence-Enabled Analysis of Public Attitudes on Facebook and Twitter Toward COVID-19 Vaccines in the United Kingdom and the United States: Observational Study.
    Hussain A; Tahir A; Hussain Z; Sheikh Z; Gogate M; Dashtipour K; Ali A; Sheikh A
    J Med Internet Res; 2021 Apr; 23(4):e26627. PubMed ID: 33724919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking COVID-19 Discourse on Twitter in North America: Infodemiology Study Using Topic Modeling and Aspect-Based Sentiment Analysis.
    Jang H; Rempel E; Roth D; Carenini G; Janjua NZ
    J Med Internet Res; 2021 Feb; 23(2):e25431. PubMed ID: 33497352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors Driving the Popularity and Virality of COVID-19 Vaccine Discourse on Twitter: Text Mining and Data Visualization Study.
    Zhang J; Wang Y; Shi M; Wang X
    JMIR Public Health Surveill; 2021 Dec; 7(12):e32814. PubMed ID: 34665761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study.
    Abd-Alrazaq A; Alhuwail D; Househ M; Hamdi M; Shah Z
    J Med Internet Res; 2020 Apr; 22(4):e19016. PubMed ID: 32287039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. COVID-19 Vaccine Tweets After Vaccine Rollout: Sentiment-Based Topic Modeling.
    Huangfu L; Mo Y; Zhang P; Zeng DD; He S
    J Med Internet Res; 2022 Feb; 24(2):e31726. PubMed ID: 34783665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining Public Sentiments and Attitudes Toward COVID-19 Vaccination: Infoveillance Study Using Twitter Posts.
    Chandrasekaran R; Desai R; Shah H; Kumar V; Moustakas E
    JMIR Infodemiology; 2022; 2(1):e33909. PubMed ID: 35462735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking discussions of complementary, alternative, and integrative medicine in the context of the COVID-19 pandemic: a month-by-month sentiment analysis of Twitter data.
    Ng JY; Abdelkader W; Lokker C
    BMC Complement Med Ther; 2022 Apr; 22(1):105. PubMed ID: 35418205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Public Emotions on Obesity During the COVID-19 Pandemic Using Sentiment Analysis and Topic Modeling: Cross-Sectional Study.
    Correia JC; Ahmad SS; Waqas A; Meraj H; Pataky Z
    J Med Internet Res; 2024 Oct; 26():e52142. PubMed ID: 39393064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 82.