These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36150156)

  • 1. Selective and Chemical-Free Removal of Toxic Heavy Metal Cations from Water Using Shock Ion Extraction.
    Alkhadra MA; Jordan ML; Tian H; Arges CG; Bazant MZ
    Environ Sci Technol; 2022 Oct; 56(19):14091-14098. PubMed ID: 36150156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater.
    Mahmoud A; Hoadley AF
    Water Res; 2012 Jun; 46(10):3364-76. PubMed ID: 22503588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion exchange extraction of heavy metals from wastewater sludges.
    Al-Enezi G; Hamoda MF; Fawzi N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(2):455-64. PubMed ID: 15027828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method.
    Dabrowski A; Hubicki Z; Podkościelny P; Robens E
    Chemosphere; 2004 Jul; 56(2):91-106. PubMed ID: 15120554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel electrochemical ion exchange system and its application in water treatment.
    Li Y; Li Y; Liu Z; Wu T; Tian Y
    J Environ Sci (China); 2011 Jun; 23 Suppl():S14-7. PubMed ID: 25084577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion.
    Pan BC; Zhang QR; Zhang WM; Pan BJ; Du W; Lv L; Zhang QJ; Xu ZW; Zhang QX
    J Colloid Interface Sci; 2007 Jun; 310(1):99-105. PubMed ID: 17336317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removing miscellaneous heavy metals by all-in-one ion exchange-nanofiltration membrane.
    Fu ZJ; Jiang SK; Chao XY; Zhang CX; Shi Q; Wang ZY; Liu ML; Sun SP
    Water Res; 2022 Aug; 222():118888. PubMed ID: 35907304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of organic substance fraction removal during ion exchange with Miex-DOC resin.
    Wolska M
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):10360-6. PubMed ID: 25976333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The binding of metal ions to molecularly-imprinted polymers.
    Perera R; Ashraf S; Mueller A
    Water Sci Technol; 2017 Apr; 75(7-8):1643-1650. PubMed ID: 28402305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization and applications of a new cation exchanger tamarind sulphonic acid (TSA) resin.
    Singh AV; Sharma NK; Rathore AS
    Environ Technol; 2012; 33(4-6):473-80. PubMed ID: 22629619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of polymeric sub-micron ion-exchange resins for removal of lead, copper, zinc, and nickel from natural waters.
    Murray A; Örmeci B
    J Environ Sci (China); 2019 Jan; 75():247-254. PubMed ID: 30473290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress, Challenges, and Opportunities of Membrane Distillation for Heavy Metals Removal.
    Aijaz MO; Karim MR; Omar NMA; Othman MHD; Wahab MA; Akhtar Uzzaman M; Alharbi HM; Wazeer I
    Chem Rec; 2022 Jul; 22(7):e202100323. PubMed ID: 35258163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research on removal of copper, manganese and zinc ions using cation exchange membrane based on Donnan dialysis].
    Xie DH; Shi Z; Chen SY; Xie P; Song Y
    Huan Jing Ke Xue; 2010 Sep; 31(9):2100-4. PubMed ID: 21072930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion.
    Alkhadra MA; Su X; Suss ME; Tian H; Guyes EN; Shocron AN; Conforti KM; de Souza JP; Kim N; Tedesco M; Khoiruddin K; Wenten IG; Santiago JG; Hatton TA; Bazant MZ
    Chem Rev; 2022 Aug; 122(16):13547-13635. PubMed ID: 35904408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant.
    Yeon KH; Song JH; Moon SH
    Water Res; 2004 Apr; 38(7):1911-21. PubMed ID: 15026246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption and continuous filtration of heavy metals and radionuclides using novel nano-Farringtonite: Mechanisms delineation using EXAFS.
    Khandelwal N; Darbha GK
    Chemosphere; 2022 Dec; 308(Pt 3):136376. PubMed ID: 36113660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of resin charged functional group, porosity, and chemical matrix on the long-term pharmaceutical removal mechanism by conventional ion exchange resins.
    Wang W; Li X; Yuan S; Sun J; Zheng S
    Chemosphere; 2016 Oct; 160():71-9. PubMed ID: 27367175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mg-Fe layered double hydroxide assembled on biochar derived from rice husk ash: facile synthesis and application in efficient removal of heavy metals.
    Yu J; Zhu Z; Zhang H; Qiu Y; Yin D
    Environ Sci Pollut Res Int; 2018 Aug; 25(24):24293-24304. PubMed ID: 29948711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on recent advances in electrodeionization for various environmental applications.
    Rathi BS; Kumar PS; Parthiban R
    Chemosphere; 2022 Feb; 289():133223. PubMed ID: 34896170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.