These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36150188)

  • 1. Thermodynamics and Kinetics of the Cathode-Electrolyte Interface in All-Solid-State Li-S Batteries.
    Holekevi Chandrappa ML; Qi J; Chen C; Banerjee S; Ong SP
    J Am Chem Soc; 2022 Oct; 144(39):18009-18022. PubMed ID: 36150188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic Assessment of Coating Materials for Solid-State Li, Na, and K Batteries.
    Yu S; Park H; Siegel DJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36607-36615. PubMed ID: 31522493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress in High-Performance Lithium Sulfur Batteries: The Emerging Strategies for Advanced Separators/Electrolytes Based on Nanomaterials and Corresponding Interfaces.
    Wang X; Deng N; Wei L; Yang Q; Xiang H; Wang M; Cheng B; Kang W
    Chem Asian J; 2021 Oct; 16(19):2852-2870. PubMed ID: 34265166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries.
    Luo C; Hu E; Gaskell KJ; Fan X; Gao T; Cui C; Ghose S; Yang XQ; Wang C
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14712-14720. PubMed ID: 32554498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Will Sulfide Electrolytes be Suitable Candidates for Constructing a Stable Solid/Liquid Electrolyte Interface?
    Fan B; Xu Y; Ma R; Luo Z; Wang F; Zhang X; Ma H; Fan P; Xue B; Han W
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52845-52856. PubMed ID: 33170619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.
    Yu X; Bi Z; Zhao F; Manthiram A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Li-Rich Layered Sulfide as Cathode Active Materials in All-Solid-State Li-Metal Batteries.
    Marchini F; Saha S; Alves Dalla Corte D; Tarascon JM
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15145-15154. PubMed ID: 32167273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable Interface between Sulfide Solid Electrolyte and Room-Temperature Liquid Lithium Anode.
    Peng J; Wu D; Jiang Z; Lu P; Wang Z; Ma T; Yang M; Li H; Chen L; Wu F
    ACS Nano; 2023 Jul; 17(13):12706-12722. PubMed ID: 37350447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamentals of the Cathode-Electrolyte Interface in All-solid-state Lithium Batteries.
    Jiang Y; Lai A; Ma J; Yu K; Zeng H; Zhang G; Huang W; Wang C; Chi SS; Wang J; Deng Y
    ChemSusChem; 2023 May; 16(9):e202202156. PubMed ID: 36715574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives.
    Nie K; Hong Y; Qiu J; Li Q; Yu X; Li H; Chen L
    Front Chem; 2018; 6():616. PubMed ID: 30619824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface.
    Fu KK; Gong Y; Liu B; Zhu Y; Xu S; Yao Y; Luo W; Wang C; Lacey SD; Dai J; Chen Y; Mo Y; Wachsman E; Hu L
    Sci Adv; 2017 Apr; 3(4):e1601659. PubMed ID: 28435874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation Mechanisms at the Li
    Zhang W; Richter FH; Culver SP; Leichtweiss T; Lozano JG; Dietrich C; Bruce PG; Zeier WG; Janek J
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22226-22236. PubMed ID: 29877698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-Of-The-Art and Future Challenges in High Energy Lithium-Selenium Batteries.
    Sun J; Du Z; Liu Y; Ai W; Wang K; Wang T; Du H; Liu L; Huang W
    Adv Mater; 2021 Mar; 33(10):e2003845. PubMed ID: 33491836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries.
    Hao H; Hutter T; Boyce BL; Watt J; Liu P; Mitlin D
    Chem Rev; 2022 May; 122(9):8053-8125. PubMed ID: 35349271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Formation of a Solid Electrolyte Interface as a Smart Blocking Layer for High-Stability Sulfur Cathode.
    Guo J; Du X; Zhang X; Zhang F; Liu J
    Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28436543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Combined Ordered Macro-Mesoporous Architecture Design and Surface Engineering Strategy for High-Performance Sulfur Immobilizer in Lithium-Sulfur Batteries.
    Liu G; Luo D; Gao R; Hu Y; Yu A; Chen Z
    Small; 2020 Sep; 16(37):e2001089. PubMed ID: 32776459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.