These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 36150190)
1. Assessment of the Second-Order Statically Screened Exchange Correction to the Random Phase Approximation for Correlation Energies. Förster A J Chem Theory Comput; 2022 Oct; 18(10):5948-5965. PubMed ID: 36150190 [TBL] [Abstract][Full Text] [Related]
2. Short-range second order screened exchange correction to RPA correlation energies. Beuerle M; Ochsenfeld C J Chem Phys; 2017 Nov; 147(20):204107. PubMed ID: 29195276 [TBL] [Abstract][Full Text] [Related]
3. Random phase approximation with second-order screened exchange for current-carrying atomic states. Zhu W; Zhang L; Trickey SB J Chem Phys; 2016 Dec; 145(22):224106. PubMed ID: 27984916 [TBL] [Abstract][Full Text] [Related]
4. Performance and Scope of Perturbative Corrections to Random-Phase Approximation Energies. Chen GP; Agee MM; Furche F J Chem Theory Comput; 2018 Nov; 14(11):5701-5714. PubMed ID: 30240213 [TBL] [Abstract][Full Text] [Related]
5. Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism. Beuerle M; Graf D; Schurkus HF; Ochsenfeld C J Chem Phys; 2018 May; 148(20):204104. PubMed ID: 29865814 [TBL] [Abstract][Full Text] [Related]
6. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects. Mussard B; Rocca D; Jansen G; Ángyán JG J Chem Theory Comput; 2016 May; 12(5):2191-202. PubMed ID: 26986444 [TBL] [Abstract][Full Text] [Related]
7. Reducing the Many-Electron Self-Interaction Error in the Second-Order Screened Exchange Method. Mezei PD; Ruzsinszky A; Kállay M J Chem Theory Comput; 2019 Dec; 15(12):6607-6616. PubMed ID: 31638791 [TBL] [Abstract][Full Text] [Related]
9. Improving the accuracy of ground-state correlation energies within a plane-wave basis set: The electron-hole exchange kernel. Dixit A; Ángyán JG; Rocca D J Chem Phys; 2016 Sep; 145(10):104105. PubMed ID: 27634249 [TBL] [Abstract][Full Text] [Related]
10. Cubic-scaling algorithm and self-consistent field for the random-phase approximation with second-order screened exchange. Moussa JE J Chem Phys; 2014 Jan; 140(1):014107. PubMed ID: 24410221 [TBL] [Abstract][Full Text] [Related]
11. Improving the Efficiency of Beyond-RPA Methods within the Dielectric Matrix Formulation: Algorithms and Applications to the A24 and S22 Test Sets. Dixit A; Claudot J; Lebègue S; Rocca D J Chem Theory Comput; 2017 Nov; 13(11):5432-5442. PubMed ID: 29019689 [TBL] [Abstract][Full Text] [Related]
12. Staggered Mesh Method for Correlation Energy Calculations of Solids: Random Phase Approximation in Direct Ring Coupled Cluster Doubles and Adiabatic Connection Formalisms. Xing X; Lin L J Chem Theory Comput; 2022 Feb; 18(2):763-775. PubMed ID: 34989566 [TBL] [Abstract][Full Text] [Related]
13. Correlation Energy Expressions from the Adiabatic-Connection Fluctuation-Dissipation Theorem Approach. Ángyán JG; Liu RF; Toulouse J; Jansen G J Chem Theory Comput; 2011 Oct; 7(10):3116-30. PubMed ID: 26598155 [TBL] [Abstract][Full Text] [Related]
14. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules. Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488 [TBL] [Abstract][Full Text] [Related]
15. Description of noncovalent interactions involving π-system with high precision: An assessment of RPA, MP2, and DFT-D methods. Su H; Wang H; Wang H; Lu Y; Zhu Z J Comput Chem; 2019 Jun; 40(17):1643-1651. PubMed ID: 30937960 [TBL] [Abstract][Full Text] [Related]
16. Screened Exchange Corrections to the Random Phase Approximation from Many-Body Perturbation Theory. Hummel F; Grüneis A; Kresse G; Ziesche P J Chem Theory Comput; 2019 May; 15(5):3223-3236. PubMed ID: 30901204 [TBL] [Abstract][Full Text] [Related]
17. Dual-hybrid direct random phase approximation and second-order screened exchange with nonlocal van der Waals correlations for noncovalent interactions. Yu F; Wang Y J Comput Chem; 2020 Apr; 41(10):1018-1025. PubMed ID: 31951036 [TBL] [Abstract][Full Text] [Related]
18. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation. van Aggelen H; Yang Y; Yang W J Chem Phys; 2014 May; 140(18):18A511. PubMed ID: 24832319 [TBL] [Abstract][Full Text] [Related]
19. Hybrid functionals including random phase approximation correlation and second-order screened exchange. Paier J; Janesko BG; Henderson TM; Scuseria GE; Grüneis A; Kresse G J Chem Phys; 2010 Mar; 132(9):094103. PubMed ID: 20210385 [TBL] [Abstract][Full Text] [Related]
20. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations. Ren X; Tkatchenko A; Rinke P; Scheffler M Phys Rev Lett; 2011 Apr; 106(15):153003. PubMed ID: 21568551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]