These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 36150236)

  • 21. Biotechnological interventions for improving the seed longevity in cereal crops: progress and prospects.
    Choudhary P; Pramitha L; Aggarwal PR; Rana S; Vetriventhan M; Muthamilarasan M
    Crit Rev Biotechnol; 2023 Mar; 43(2):309-325. PubMed ID: 35443842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hotter, drier, CRISPR: the latest edit on climate change.
    Massel K; Lam Y; Wong ACS; Hickey LT; Borrell AK; Godwin ID
    Theor Appl Genet; 2021 Jun; 134(6):1691-1709. PubMed ID: 33420514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in cereal genomics and applications in crop breeding.
    Varshney RK; Hoisington DA; Tyagi AK
    Trends Biotechnol; 2006 Nov; 24(11):490-9. PubMed ID: 16956681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global agricultural intensification during climate change: a role for genomics.
    Abberton M; Batley J; Bentley A; Bryant J; Cai H; Cockram J; de Oliveira AC; Cseke LJ; Dempewolf H; De Pace C; Edwards D; Gepts P; Greenland A; Hall AE; Henry R; Hori K; Howe GT; Hughes S; Humphreys M; Lightfoot D; Marshall A; Mayes S; Nguyen HT; Ogbonnaya FC; Ortiz R; Paterson AH; Tuberosa R; Valliyodan B; Varshney RK; Yano M
    Plant Biotechnol J; 2016 Apr; 14(4):1095-8. PubMed ID: 26360509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics.
    Marsh JI; Hu H; Gill M; Batley J; Edwards D
    Theor Appl Genet; 2021 Jun; 134(6):1677-1690. PubMed ID: 33852055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic Enhancement of Cereals Using Genomic Resources for Nutritional Food Security.
    Chaudhary N; Salgotra RK; Chauhan BS
    Genes (Basel); 2023 Sep; 14(9):. PubMed ID: 37761910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Current patents and future development underlying marker-assisted breeding in major grain crops.
    Utomo HS; Linscombe SD
    Recent Pat DNA Gene Seq; 2009; 3(1):53-62. PubMed ID: 19149739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Next Generation Cereal Crop Yield Enhancement: From Knowledge of Inflorescence Development to Practical Engineering by Genome Editing.
    Liu L; Lindsay PL; Jackson D
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses.
    Muthamilarasan M; Prasad M
    Theor Appl Genet; 2015 Jan; 128(1):1-14. PubMed ID: 25239219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomics and breeding innovations for enhancing genetic gain for climate resilience and nutrition traits.
    Sinha P; Singh VK; Bohra A; Kumar A; Reif JC; Varshney RK
    Theor Appl Genet; 2021 Jun; 134(6):1829-1843. PubMed ID: 34014373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stay-Green Trait: A Prospective Approach for Yield Potential, and Drought and Heat Stress Adaptation in Globally Important Cereals.
    Kamal NM; Alnor Gorafi YS; Abdelrahman M; Abdellatef E; Tsujimoto H
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31757070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity.
    Janni M; Gullì M; Maestri E; Marmiroli M; Valliyodan B; Nguyen HT; Marmiroli N
    J Exp Bot; 2020 Jun; 71(13):3780-3802. PubMed ID: 31970395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water stress resilient cereal crops: Lessons from wild relatives.
    Toulotte JM; Pantazopoulou CK; Sanclemente MA; Voesenek LACJ; Sasidharan R
    J Integr Plant Biol; 2022 Feb; 64(2):412-430. PubMed ID: 35029029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From zero to hero: the past, present and future of grain amaranth breeding.
    Joshi DC; Sood S; Hosahatti R; Kant L; Pattanayak A; Kumar A; Yadav D; Stetter MG
    Theor Appl Genet; 2018 Sep; 131(9):1807-1823. PubMed ID: 29992369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allele mining through TILLING and EcoTILLING approaches in vegetable crops.
    Selvakumar R; Jat GS; Manjunathagowda DC
    Planta; 2023 Jun; 258(1):15. PubMed ID: 37311932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finger millet: a hero in the making to combat food insecurity.
    Wright H; Devos KM
    Theor Appl Genet; 2024 May; 137(6):139. PubMed ID: 38771345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises.
    Rasheed A; Gill RA; Hassan MU; Mahmood A; Qari S; Zaman QU; Ilyas M; Aamer M; Batool M; Li H; Wu Z
    Curr Issues Mol Biol; 2021 Nov; 43(3):1950-1976. PubMed ID: 34889892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective.
    Muthamilarasan M; Singh NK; Prasad M
    Adv Genet; 2019; 103():1-38. PubMed ID: 30904092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic pathways engineering for drought or/and heat tolerance in cereals.
    Liu S; Zenda T; Tian Z; Huang Z
    Front Plant Sci; 2023; 14():1111875. PubMed ID: 37810398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Breeding for abiotic stresses for sustainable agriculture.
    Witcombe JR; Hollington PA; Howarth CJ; Reader S; Steele KA
    Philos Trans R Soc Lond B Biol Sci; 2008 Feb; 363(1492):703-16. PubMed ID: 17761467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.