These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 36150271)
1. Focused Attention in Transformers for interpretable classification of retinal images. Playout C; Duval R; Boucher MC; Cheriet F Med Image Anal; 2022 Nov; 82():102608. PubMed ID: 36150271 [TBL] [Abstract][Full Text] [Related]
2. HTC-retina: A hybrid retinal diseases classification model using transformer-Convolutional Neural Network from optical coherence tomography images. Laouarem A; Kara-Mohamed C; Bourennane EB; Hamdi-Cherif A Comput Biol Med; 2024 Aug; 178():108726. PubMed ID: 38878400 [TBL] [Abstract][Full Text] [Related]
3. How to Extract More Information With Less Burden: Fundus Image Classification and Retinal Disease Localization With Ophthalmologist Intervention. Meng Q; Hashimoto Y; Satoh S IEEE J Biomed Health Inform; 2020 Dec; 24(12):3351-3361. PubMed ID: 32750970 [TBL] [Abstract][Full Text] [Related]
4. Vision Transformer-based recognition of diabetic retinopathy grade. Wu J; Hu R; Xiao Z; Chen J; Liu J Med Phys; 2021 Dec; 48(12):7850-7863. PubMed ID: 34693536 [TBL] [Abstract][Full Text] [Related]
5. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057 [TBL] [Abstract][Full Text] [Related]
6. Multi-Label Retinal Disease Classification Using Transformers. Rodriguez MA; AlMarzouqi H; Liatsis P IEEE J Biomed Health Inform; 2023 Jun; 27(6):2739-2750. PubMed ID: 36223359 [TBL] [Abstract][Full Text] [Related]
7. Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification. Fang L; Wang C; Li S; Rabbani H; Chen X; Liu Z IEEE Trans Med Imaging; 2019 Aug; 38(8):1959-1970. PubMed ID: 30763240 [TBL] [Abstract][Full Text] [Related]
8. Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retinal Fundus Images. Kim YD; Noh KJ; Byun SJ; Lee S; Kim T; Sunwoo L; Lee KJ; Kang SH; Park KH; Park SJ Sci Rep; 2020 Mar; 10(1):4623. PubMed ID: 32165702 [TBL] [Abstract][Full Text] [Related]
9. Deep Ensemble Learning for Retinal Image Classification. Ho E; Wang E; Youn S; Sivajohan A; Lane K; Chun J; Hutnik CML Transl Vis Sci Technol; 2022 Oct; 11(10):39. PubMed ID: 36306121 [TBL] [Abstract][Full Text] [Related]
10. Scale-space approximated convolutional neural networks for retinal vessel segmentation. Noh KJ; Park SJ; Lee S Comput Methods Programs Biomed; 2019 Sep; 178():237-246. PubMed ID: 31416552 [TBL] [Abstract][Full Text] [Related]
11. Structure-Oriented Transformer for retinal diseases grading from OCT images. Shen J; Hu Y; Zhang X; Gong Y; Kawasaki R; Liu J Comput Biol Med; 2023 Jan; 152():106445. PubMed ID: 36549031 [TBL] [Abstract][Full Text] [Related]
12. Multi-label classification of retinal diseases based on fundus images using Resnet and Transformer. Zhao J; Zhu J; He J; Cao G; Dai C Med Biol Eng Comput; 2024 Nov; 62(11):3459-3469. PubMed ID: 38871856 [TBL] [Abstract][Full Text] [Related]
13. Cross-Attention Based Multi-Resolution Feature Fusion Model for Self-Supervised Cervical OCT Image Classification. Wang Q; Chen K; Dou W; Ma Y IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(4):2541-2554. PubMed ID: 37027657 [TBL] [Abstract][Full Text] [Related]
14. Surrogate-Assisted Retinal OCT Image Classification Based on Convolutional Neural Networks. Rong Y; Xiang D; Zhu W; Yu K; Shi F; Fan Z; Chen X IEEE J Biomed Health Inform; 2019 Jan; 23(1):253-263. PubMed ID: 29994378 [TBL] [Abstract][Full Text] [Related]
15. Multi-Modal Retinal Image Classification With Modality-Specific Attention Network. He X; Deng Y; Fang L; Peng Q IEEE Trans Med Imaging; 2021 Jun; 40(6):1591-1602. PubMed ID: 33625978 [TBL] [Abstract][Full Text] [Related]
16. A novel hybrid transformer-CNN architecture for environmental microorganism classification. Shao R; Bi XJ; Chen Z PLoS One; 2022; 17(11):e0277557. PubMed ID: 36367879 [TBL] [Abstract][Full Text] [Related]
17. OTNet: A CNN Method Based on Hierarchical Attention Maps for Grading Arteriosclerosis of Fundus Images with Small Samples. Bai H; Gao L; Quan X; Zhang H; Gao S; Kang C; Qi J Interdiscip Sci; 2022 Mar; 14(1):182-195. PubMed ID: 34536209 [TBL] [Abstract][Full Text] [Related]
18. DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images. Raza M; Naveed K; Akram A; Salem N; Afaq A; Madni HA; Khan MAU; Din MZ PLoS One; 2021; 16(12):e0261698. PubMed ID: 34972109 [TBL] [Abstract][Full Text] [Related]
19. Multi-scale convolutional neural network for automated AMD classification using retinal OCT images. Sotoudeh-Paima S; Jodeiri A; Hajizadeh F; Soltanian-Zadeh H Comput Biol Med; 2022 May; 144():105368. PubMed ID: 35259614 [TBL] [Abstract][Full Text] [Related]
20. A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images. Playout C; Duval R; Cheriet F IEEE Trans Med Imaging; 2019 Oct; 38(10):2434-2444. PubMed ID: 30908197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]