BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 36150376)

  • 61. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel.
    Chen Y; Zhang F; Fu Q; Liu Y; Wang Z; Qi N
    J Biomater Appl; 2016 Sep; 31(3):317-27. PubMed ID: 27496540
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synthesis and Evaluation of BMMSC-seeded BMP-6/nHAG/GMS Scaffolds for Bone Regeneration.
    Li X; Zhang R; Tan X; Li B; Liu Y; Wang X
    Int J Med Sci; 2019; 16(7):1007-1017. PubMed ID: 31341414
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering.
    Bastami F; Paknejad Z; Jafari M; Salehi M; Rezai Rad M; Khojasteh A
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():481-491. PubMed ID: 28024612
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells.
    Yu H; Zhang X; Song W; Pan T; Wang H; Ning T; Wei Q; Xu HHK; Wu B; Ma D
    J Endod; 2019 Jun; 45(6):706-715. PubMed ID: 31056297
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization.
    Shafiei S; Omidi M; Nasehi F; Golzar H; Mohammadrezaei D; Rezai Rad M; Khojasteh A
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():564-575. PubMed ID: 30948093
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.
    Wang C; Zhao Q; Wang M
    Biofabrication; 2017 Jun; 9(2):025031. PubMed ID: 28589918
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering.
    Aragón J; Salerno S; De Bartolo L; Irusta S; Mendoza G
    J Colloid Interface Sci; 2018 Dec; 531():126-137. PubMed ID: 30029031
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A new hydrogel with fluorapatite nanoparticles for osteogenic differentiation of human adipose-derived stem cells in tissue engineering field.
    Rohani Z; Ghollasi M; Aghamollaei H; Saidi H; Halabian R; Kheirollahzadeh F; Poormoghadam D
    Cell Tissue Res; 2022 Dec; 390(3):399-411. PubMed ID: 36152061
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Potential of hydrogels based on poly(ethylene glycol) and sebacic acid as orthopedic tissue engineering scaffolds.
    Kim J; Hefferan TE; Yaszemski MJ; Lu L
    Tissue Eng Part A; 2009 Aug; 15(8):2299-307. PubMed ID: 19292677
    [TBL] [Abstract][Full Text] [Related]  

  • 70. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA.
    Buyuksungur S; Hasirci V; Hasirci N
    J Biomed Mater Res A; 2021 Dec; 109(12):2425-2437. PubMed ID: 34033241
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells.
    Kazimierczak P; Benko A; Nocun M; Przekora A
    Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds.
    Kumar PT; Srinivasan S; Lakshmanan VK; Tamura H; Nair SV; Jayakumar R
    Int J Biol Macromol; 2011 Jul; 49(1):20-31. PubMed ID: 21435350
    [TBL] [Abstract][Full Text] [Related]  

  • 73. PCL/Col I-based magnetic nanocomposite scaffold provides an osteoinductive environment for ADSCs in osteogenic cues-free media conditions.
    Sadeghzadeh H; Mehdipour A; Dianat-Moghadam H; Salehi R; Khoshfetrat AB; Hassani A; Mohammadnejad D
    Stem Cell Res Ther; 2022 Apr; 13(1):143. PubMed ID: 35379318
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Resorbable PCEC/gelatin-bismuth doped bioglass-graphene oxide bilayer membranes for guided bone regeneration.
    Pazarçeviren AE; Evis Z; Keskin D; Tezcaner A
    Biomed Mater; 2019 Apr; 14(3):035018. PubMed ID: 30665204
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Augmented physical, mechanical, and cellular responsiveness of gelatin-aldehyde modified xanthan hydrogel through incorporation of silicon nanoparticles for bone tissue engineering.
    Aghajanzadeh MS; Imani R; Nazarpak MH; McInnes SJP
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129231. PubMed ID: 38185310
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics.
    Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y
    J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Addition of Bone-Marrow Mesenchymal Stem Cells to 3D-Printed Alginate/Gelatin Hydrogel Containing Freeze-Dried Bone Nanoparticles Accelerates Regeneration of Critical Size Bone Defects.
    Bastami F; Safavi SM; Seifi S; Nadjmi N; Khojasteh A
    Macromol Biosci; 2024 Mar; 24(3):e2300065. PubMed ID: 37846197
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Preparation of laminated poly(ε-caprolactone)-gelatin-hydroxyapatite nanocomposite scaffold bioengineered via compound techniques for bone substitution.
    Hamlekhan A; Moztarzadeh F; Mozafari M; Azami M; Nezafati N
    Biomatter; 2011; 1(1):91-101. PubMed ID: 23507731
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration.
    Zhang X; Du X; Li D; Ao R; Yu B; Yu B
    J Biomater Sci Polym Ed; 2018 Oct; 29(14):1686-1700. PubMed ID: 29768120
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF.
    Amirian J; Linh NT; Min YK; Lee BT
    Int J Biol Macromol; 2015 May; 76():10-24. PubMed ID: 25709009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.