These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 36150672)
21. Macrolide antibiotic-mediated downregulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Sugimura M; Maseda H; Hanaki H; Nakae T Antimicrob Agents Chemother; 2008 Nov; 52(11):4141-4. PubMed ID: 18676884 [TBL] [Abstract][Full Text] [Related]
22. Recombineering reveals a diverse collection of ribosomal proteins L4 and L22 that confer resistance to macrolide antibiotics. Diner EJ; Hayes CS J Mol Biol; 2009 Feb; 386(2):300-15. PubMed ID: 19150357 [TBL] [Abstract][Full Text] [Related]
23. Lack of mutation in macrolide resistance genes in Chlamydia trachomatis clinical isolates with decreased susceptibility to azithromycin. Bhengraj AR; Srivastava P; Mittal A Int J Antimicrob Agents; 2011 Aug; 38(2):178-9. PubMed ID: 21570258 [No Abstract] [Full Text] [Related]
24. Antibiotic susceptibilities and genetic variations in macrolide resistance genes of Ureaplasma spp. isolated in China. Song T; Huang J; Liu Z; Zhang Y; Kong Y; Ruan Z New Microbiol; 2019 Oct; 42(4):225-227. PubMed ID: 31305936 [TBL] [Abstract][Full Text] [Related]
26. Mutational and transcriptomic changes involved in the development of macrolide resistance in Campylobacter jejuni. Hao H; Yuan Z; Shen Z; Han J; Sahin O; Liu P; Zhang Q Antimicrob Agents Chemother; 2013 Mar; 57(3):1369-78. PubMed ID: 23274667 [TBL] [Abstract][Full Text] [Related]
27. 23S rRNA and L22 ribosomal protein are involved in the acquisition of macrolide and lincosamide resistance in Mycoplasma capricolum subsp. capricolum. Prats-van der Ham M; Tatay-Dualde J; Gómez-Martín Á; Corrales JC; Contreras A; Sánchez A; de la Fe C Vet Microbiol; 2018 Mar; 216():207-211. PubMed ID: 29519518 [TBL] [Abstract][Full Text] [Related]
28. [Anti-bacterial chemotherapy--bench to clinic: with special reference to multiple-drug resistant Pseudomonas aeruginosa]. Tateda K Jpn J Antibiot; 2007 Oct; 60(5):311-4. PubMed ID: 18271141 [No Abstract] [Full Text] [Related]
29. Development, stability, and molecular mechanisms of macrolide resistance in Campylobacter jejuni. Caldwell DB; Wang Y; Lin J Antimicrob Agents Chemother; 2008 Nov; 52(11):3947-54. PubMed ID: 18779354 [TBL] [Abstract][Full Text] [Related]
30. Animal models of chronic and recurrent Pseudomonas aeruginosa lung infection: significance of macrolide treatment. Thomsen K; Kobayashi O; Kishi K; Shirai R; Østrup Jensen P; Heydorn A; Hentzer M; Calum H; Christophersen L; Høiby N; Moser C APMIS; 2022 Jul; 130(7):458-476. PubMed ID: 34117660 [TBL] [Abstract][Full Text] [Related]
31. Suppression of Pseudomonas aeruginosa quorum-sensing systems by macrolides: a promising strategy or an oriental mystery? Tateda K; Ishii Y; Kimura S; Horikawa M; Miyairi S; Yamaguchi K J Infect Chemother; 2007 Dec; 13(6):357-67. PubMed ID: 18095083 [TBL] [Abstract][Full Text] [Related]
32. Macrolide resistance-associated 23S rRNA mutation in Mycoplasma genitalium, Japan. Shimada Y; Deguchi T; Nakane K; Yasuda M; Yokoi S; Ito S; Nakano M; Ito S; Ishiko H Emerg Infect Dis; 2011 Jun; 17(6):1148-50. PubMed ID: 21749801 [No Abstract] [Full Text] [Related]
33. Time-kill study of the activity of telithromycin against macrolide-resistant Streptococcus pneumoniae Isolates with 23S rRNA mutations and changes in ribosomal proteins L4 and L22. Reinert RR; Al-Lahham A Antimicrob Agents Chemother; 2005 Jul; 49(7):3011-3. PubMed ID: 15980387 [TBL] [Abstract][Full Text] [Related]
34. Diffuse panbronchiolitis--pathophysiology and treatment mechanisms. Yanagihara K; Kadoto J; Kohno S Int J Antimicrob Agents; 2001; 18 Suppl 1():S83-7. PubMed ID: 11574201 [TBL] [Abstract][Full Text] [Related]
35. Mycobacterial HflX is a ribosome splitting factor that mediates antibiotic resistance. Rudra P; Hurst-Hess KR; Cotten KL; Partida-Miranda A; Ghosh P Proc Natl Acad Sci U S A; 2020 Jan; 117(1):629-634. PubMed ID: 31871194 [TBL] [Abstract][Full Text] [Related]
36. Resistance to macrolides in clinical isolates of Streptococcus pyogenes due to ribosomal mutations. Malbruny B; Nagai K; Coquemont M; Bozdogan B; Andrasevic AT; Hupkova H; Leclercq R; Appelbaum PC J Antimicrob Chemother; 2002 Jun; 49(6):935-9. PubMed ID: 12039885 [TBL] [Abstract][Full Text] [Related]
37. Insights into the evolution of the mutational resistome of Pseudomonas aeruginosa in cystic fibrosis. López-Causapé C; Oliver A Future Microbiol; 2017 Dec; 12():1445-1448. PubMed ID: 29068237 [No Abstract] [Full Text] [Related]
38. Ribosomal mutations conferring resistance to macrolides in Streptococcus pneumoniae clinical strains isolated in Germany. Reinert RR; Wild A; Appelbaum P; Lütticken R; Cil MY; Al-Lahham A Antimicrob Agents Chemother; 2003 Jul; 47(7):2319-22. PubMed ID: 12821488 [TBL] [Abstract][Full Text] [Related]
39. [Pseudomonas aeruginosa infections in chronic obstructive pulmonary disease : Role of long-term antibiotic treatment]. Rohde GGU; Welte T Internist (Berl); 2017 Nov; 58(11):1142-1149. PubMed ID: 28983645 [TBL] [Abstract][Full Text] [Related]
40. Resistance to macrolides by ribosomal mutation in clinical isolates of Turicella otitidis. Boumghar-Bourtchai L; Chardon H; Malbruny B; Mezghani S; Leclercq R; Dhalluin A Int J Antimicrob Agents; 2009 Sep; 34(3):274-7. PubMed ID: 19414240 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]